• 제목/요약/키워드: three-mass vehicle model

검색결과 25건 처리시간 0.021초

Theoretical formulation for vehicle-bridge interaction analysis based on perturbation method

  • Tan, Yongchao;Cao, Liang;Li, Jiang
    • Structural Engineering and Mechanics
    • /
    • 제82권2호
    • /
    • pp.191-204
    • /
    • 2022
  • A three-mass vehicle model including one rigid mass and two unsprung masses is adopted to predict the vehicle-bridge interaction (VBI) and to establish the nonlinear coupled governing equations. To overcome the numerical instability and large computation problems concerning the vehicle-bridge system, the perturbation method is used to convert the nonlinear coupled governing equations into a set of linear uncoupled equations. Formulas for bridge's natural frequencies considering both the VBI and the dynamic responses of bridge and vehicle are proposed. Compared with the numerical results obtained by the Newmark-β method, the theoretical solutions for natural frequencies and dynamic responses are validated. The effects of the important factors of unsprung mass, vehicle damping, surface irregularity on the natural frequencies and dynamic responses of bridge and vehicle are discussed, based on the theoretical solutions.

수치적 방법에 의한 승용차 동적해석 (Dynamic analysis of vehicle system using numerical method)

  • 이종원;박윤식;조영호
    • 오토저널
    • /
    • 제5권3호
    • /
    • pp.45-55
    • /
    • 1983
  • This paper discussed about Application Technique of Numerical Methods for large structure. The dynamic behaviours of a vehicle were investigated through finite element modelling. After dividing a vehicle body into three substructures, Basic Mass System was composed of 60 flexual modes which was obtained from the dynamic characteristics of each substructure using Modal Synthesis Method. Engine, transmission and rear axle, etc. were added to Basic Mass Model, consequently Full Mass System was constructed by 72 degree of freedoms. Full Mass System was analyzed over the frequency range 0.5-50.0 Hz under the loading conditions which were Stationary Gaussian Random Process. Results and discussions provided the guidelines to eliminate resonances among the parts and to improve the Ride Quality. The Absorbed Power was used as a standard to determine the Ride Quality. The RMS value of driver's vertical acceleration was obtained 0.423g from the basic model and 0.415g from the modified model.

  • PDF

유전자 알고리즘을 이용한 차량 승차감 개선에 관한 연구 (A Study on the Improvement of Vehicle Ride Comfort by Genetic Algorithms)

  • 백운태;성활경
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.76-85
    • /
    • 1998
  • Recently, Genetic Algorithm(GA) is widely adopted into a search procedure for structural optimization, which is a stochastic direct search strategy that mimics the process of genetic evolution. This methods consist of three genetics operations maned selection, crossover and mutation. Contrast to traditional optimal design techniques which use design sensitivity analysis results, GA, being zero-order method, is very simple. So, they can be easily applicable to wide area of design optimization problems. Also, owing to multi-point search procedure, they have higher probability of converge to global optimum compared to traditional techniques which take one-point search method. In this study, a method of finding the optimum values of suspension parameters is proposed by using the GA. And vehicle is modelled as planar vehicle having 5 degree-of-freedom. The generalized coordinates are vertical motion of passenger seat, sprung mass and front and rear unsprung mass and rotate(pitch) motion of sprung mass. For rapid converge and precluding local optimum, share function which distribute chromosomes over design bound is introduced. Elitist survival model, remainder stochastic sampling without replacement method, multi-point crossover method are adopted. In the sight of the improvement of ride comfort, good result can be obtained in 5-D.O.F. vehicle model by using GA.

  • PDF

공기부양선의 추진 및 부양축계 종진동 해석에 관한 연구 (A Study on the Analysis of Axial Vibration of Flexible Shafting System for Propulsion and Lift in Air Cushion Vehicle)

  • 손선태;길병래;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.768-776
    • /
    • 2007
  • In this study, axial vibration analysis has been conducted on a propulsion and lift shafting system for an air cushion vehicle using ANSYS code. The shafting system is totally flexible multi-elements system including wood composite material of air propeller. aluminum alloy of lift fan and thin walled shaft with flexible coupling. The analysis calculated the axial natural frequencies and mode shapes of the shafting system taking into account an equivalent mass-elastic model for shafting system as well as the three-dimensional models for propeller blade and fan impeller. Such a flexible shafting system has very intricate vibrating characteristics and especially, axial natural frequencies of flexible components such as propeller blade and impeller of lift fan can be lower to the extent that causes a resonance in the range of operating revolution. The results for axial vibration analysis are presented and compared with the results of axial vibration test for lift fan conducted during Sea Trial.

Manta형 무인잠수정의 부가물 형상에 따른 동유체력 특성에 관한 연구 (A Study on Hydrodynamic Force Characteristics of Manta-type Unmanned Undersea Vehicle with the Parameter of Appendage Shape)

  • 배준영;손경호
    • 한국항해항만학회지
    • /
    • 제33권5호
    • /
    • pp.309-314
    • /
    • 2009
  • Manta형 무인잠수정(MUUTV)을 대상으로 회류수조에서의 모형실험을 통해 동일한 동체 모형에 대해 형상이 서로 다른 부가물을 부착했을 때의 동유체력 특성을 실험적으로 검토하였으며, 동유체력 측정 결과를 이론계산치와 비교하였다. 아울러 이를 바탕으로 운동안정성을 검토하여 최적의 부가물 형상 결정의 이론적 근거를 확립하였다.

Manta형 무인잠수정의 부가물 형상에 따른 동유체력 특성에 관한 연구 (A Study on Hydrodynamic Force Characteristics of Manta-type Unmanned Undersea Vehicle with the Parameter of Appendage Shape)

  • 배준영;손경호
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2009년도 공동학술대회
    • /
    • pp.5-6
    • /
    • 2009
  • Manta형 무인잠수정(MUUTV)을 대상으로 회류수조에서의 모형실험을 통해 동일한 동체 모형에 대해 형상이 서로 다른 부가물을 부착했을 때의 동유체력 특성을 실험적으로 검토하였으며, 동유체력 측정 결과를 이론계산치와 비교하였다. 아울러 이를 바탕으로 운동안정성을 검토하여 최적의 부가물 형상 결정의 이론적 근거를 확립하였다.

  • PDF

자동차 현가장치의 적응제어를 위한 feedback 시스템의 성능감도 해석 (Performance sensitivity analysis of feedback system for adaptive control of a vehicle suspension)

  • 박호;전의식;오재응
    • 오토저널
    • /
    • 제13권1호
    • /
    • pp.35-45
    • /
    • 1991
  • A linear quarter model of a vehicle suspension system is built and simulated. Especially the so-called sensitivity analysis is conducted in order to show its applicability to design problems, and sensitivity function is determined in the frequency domain. The change of frequency response function is predicted, which depends on the design parameter variation and the property is verified by computer simulation. Typical performance measures, namely, sprung mass acceleration, suspension deflection, and tire deflection are examined. The vehicle model is analyzed for ist performance sensitivity as a function of the system's feedback gains. The variable feedback gains are selected as the spring and damping coefficients. Frequency response, RMS response, and performance index of the performance evaluation variables are considered and three-dimensional and contour plots of response surfaces are formed to examine output sensitivity to suspension feedback. Performance trade-offs over the entire frequency spectrum are identified from the FRF, and that between ride quality and handling characteristics are examined from the RMS responses.

  • PDF

전투차량체계의 개념탐색을 위한 화력성능분석 (Fire Power Analysis for Concept Exploration of Combat Vehicle)

  • 임오강;최은호;류재봉
    • 한국전산구조공학회논문집
    • /
    • 제22권3호
    • /
    • pp.251-258
    • /
    • 2009
  • 개념설계단계에서 전투차량은 크게 화력성능, 기동성능과 체계의 물리적 특성으로 나누어진다. 본 연구에서는 전투차량체계를 구성하는 3가지 특성 중 화력성능의 최적화로 제한한다. 체계의 개념설계 단계에서 화력성능에 영향을 미치는 주요 인자로 파괴효과에 직접적인 영향을 주는 탄의 중량과 원거리 사격을 고려한 최대사거리를 분석대상으로 선정하였다. 최대 사거리 분석을 위하여 강내탄도와 강외탄도해석은 질량 집중 모델, Le Duc모델과 질점탄도모델을 사용하여 분석하였다. 실험계획법과 회귀분석으로 반응표면식을 구성하고 선정된 인자를 반응표면법으로 최적화하였다.

샤시의 강성이 운전석 승차감에 미치는 영향 분석 (Effect of Chassis Flexibility on Ride Quality)

  • 김광석;유완석;이기호;김기태
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.127-136
    • /
    • 1996
  • Dynamic analysis of a three-axle heavy truck is carried out with rigid body model and flexible body model. To see the effects of chassis flexibility, the chassis is modeled as flexible body. The mass matrix, stiffness matrix, and vibration normal modes of the chassis are obtained by a finite element analysis program, and four vibration normal modes are used in the flexible body model. The vehicle model consisting of a frame, a cab, suspensions, an engine, a deck, a seat, and tires, has total 77 degrees of freedom. The result shows that the peaked acceleration in the flexible model is lower than that of the rigid body model.

  • PDF

Dynamic analysis of guideway structures by considering ultra high-speed Maglev train-guideway interaction

  • Song, Myung-Kwan;Fujino, Yozo
    • Structural Engineering and Mechanics
    • /
    • 제29권4호
    • /
    • pp.355-380
    • /
    • 2008
  • In this study, the new three-dimensional finite element analysis model of guideway structures considering ultra high-speed magnetic levitation train-bridge interaction, in which the various improved finite elements are used to model structural members, is proposed. The box-type bridge deck of guideway structures is modeled by Nonconforming Flat Shell finite elements with six DOF (degrees of freedom). The sidewalls on a bridge deck are idealized by using beam finite elements and spring connecting elements. The vehicle model devised for an ultra high-speed Maglev train is employed, which is composed of rigid bodies with concentrated mass. The characteristics of levitation and guidance force, which exist between the super-conducting magnet and guideway, are modeled with the equivalent spring model. By Lagrange's equations of motion, the equations of motion of Maglev train are formulated. Finally, by deriving the equations of the force acting on the guideway considering Maglev train-bridge interaction, the complete system matrices of Maglev train-guideway structure system are composed.