• Title/Summary/Keyword: three-electrode system

Search Result 198, Processing Time 0.027 seconds

Development of Fingertip Tactile Sensor for Detecting Normal Force and Slip

  • Choi, Byung-June;Kang, Sung-Chul;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1808-1813
    • /
    • 2005
  • In this paper, we present the finger tip tactile sensor which can detect contact normal force as well as slip. The developed sensor is made of two different materials, such as polyvinylidene fluoride(PVDF) that is known as piezoelectric polymer and pressure variable resistor ink. In order to detect slip to surface of object, a PVDF strip is arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, we developed a tactile sensing system by miniaturizing the charge amplifier, in order to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.

  • PDF

A STUDY ON THE SPATIAL LIGHT MODULATOR WITH PISTON PLUS TILT MODE OPERATION USING SURFACE MICROMACHINING TECHNOLOGY (표면 미세 가공 기술을 이용한 상하운동 및 회전운동을 하는 광 변조기에 관한 연구)

  • Jeong, Seok-Hwan;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.140-148
    • /
    • 2000
  • In this paper, using surface micromachining technology with thick photoresist and aluminum, an SLM(Spatial Light Modulator), which is applied to the fields of adaptive optics and pattern recognition system, was fabricated and the electromechanical properties of the fabricated micro SLM are measured. In order to maximize fill-factor and remove mechanical coupling between micro SLM actuators, the micro SLM is composed of three aluminum layers so that spring structure and upper electrode are placed beneath the mirror plate, and $10\times10$ each mirror plate is individually actuated. Also, the micro SLM was designed to be able to modulate phase and amplitude of incoming light in order to have a continuity of phase modulation of incoming light. In the case of amplitude and phase modulation, maximum vertical displacement is 4$\mum$, and maximum angular displacement is $\pm4.6^{\corc}$ respectively. The height difference of the fabricated mirror plate was able to be reduced to 1100A with mirror plate planarization method using negative photoresist(AZ5214). The electromechanical properties of the fabricated micro SLM were measured with the optical measurement system using He-Ne laser and PSD(position sensitive device).

  • PDF

Frequency Spectrum Analysis of Electromagnetic Waves Radiated by Electric Discharges

  • Park, Dae-Won;Kil, Gyung-Suk;Cheon, Sang-Gyu;Kim, Sun-Jae;Cha, Hyeon-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.389-395
    • /
    • 2012
  • In this paper, we analyzed the frequency spectrum of the electromagnetic waves radiated by an electric discharge as a basic study to develop an on-line diagnostic technique for power equipment installed inside closed-switchboards. In order to simulate local and series arc discharges caused by an electric field concentration and poor connections, three types of electrode systems were fabricated, consisting of needle and plane electrodes and an arc generator meeting the specifications of UL 1699. The experiment was carried out in an electromagnetic anechoic chamber, and the measurement system consisted of a PD free transformer, a loop antenna with a frequency bandwidth of 150 kHz-30 MHz, an ultra log periodic antenna with a frequency bandwidth of 30 MHz-2 GHz, and an EMI test receiver with a frequency bandwidth of 3 Hz-3 GHz. According to the experimental results, the frequency spectra of the electrical discharges were widely distributed across a range of 150 kHz-400 MHz, depending on the defects, while commonly found between 150 kHz and 10 MHz. Therefore, considering the ambient noise and antenna characteristics, the best frequency bandwidth for a measurement system to monitor abnormal conditions by detecting electromagnetic waves in closedswitchboards is 150 kHz-10 MHz.

Repassivation Behavior of Ni Base Alloys in a Mild Alkaline Water at 300℃

  • Hwang, Seong Sik;Kim, Dong Jin;Kim, Joung Soo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.85-89
    • /
    • 2006
  • KAERI(Korea Atomic Energy Research Institute) has developed a repassivation rate test system which can be operated at $300^{\circ}C$. It consists of an autoclave, three electrodes for an electrochemical test and a diamond scratch tip. All the electrodes are electrically insulated from the autoclave by using high temperature fittings. Reproducible repassivation curves of alloy 600 at 300 C were obtained. Repassivation rate of alloy 600 at pH 13 was slower than that of pH 10. Stress corrosion cracking test was carried as a function of the pH at a high temperature. At pH 10, alloy 600 showed a severe stress corrosion cracking(SCC), whereas it did not show a SCC at pH 7. From the viewpoint of a relationship between the current density and the charge density, a big difference was observed in the two solutions; the slope of pH 13 was steeper than that of pH 10. So the stress corrosion susceptibility at pH 13 seems to be higher than that of pH 10. The system would be a good tool to evaluate the SCC susceptibility of alloy 600 at a high temperature.

Thermoelectric properties of individual PbTe nanowires grown by a vapor transport method

  • Lee, Seung-Hyun;Jang, So-Young;Lee, Jun-Min;Roh, Jong-Wook;Park, Jeung-Hee;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.7-7
    • /
    • 2009
  • Lead telluride (PbTe) is a very promising thermoelectric material due to its narrow band gap (0.31 eV at 300 K), face-centered cubic structure and large average excitonic Bohr radius (46 nm) allowing for strong quantum confinement within a large range of size. In this work, we present the thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method. A combination of electron beam lithography and a lift-off process was utilized to fabricate inner micron-scaled Cr (5 nm)/Au (130 nm) electrodes of Rn (resistance of a near electrode), Rf (resistance of a far electrode) and a microheater connecting a PbTe nanowire on the grid of points. A plasma etching system was used to remove an oxide layer from the outer surface of the nanowires before the deposition of inner electrodes. The carrier concentration of the nanowire was estimated to be as high as $3.5{\times}10^{19}\;cm^{-3}$. The Seebeck coefficient of an individual PbTe nanowire with a radius of 68 nm was measured to be $S=-72{\mu}V/K$ at room temperature, which is about three times that of bulk PbTe at the same carrier concentration. Our results suggest that PbTe nanowires can be used for high-efficiency thermoelectric devices.

  • PDF

Fabrication and Characterization of piezoelectric thick films prepared by Screen Printing Method (Screen Printing법을 이용한 압전 후막의 제조 및 특성연구)

  • 김상종;최형욱;백동수;최지원;윤석진;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.873-876
    • /
    • 2000
  • Characteristics of piezoelectric thick films prepared by screen printing method were investigated. The piezoelectric thick films were printed using Pb(Mg,Nb)O$_3$-Pb(Zr,Ti)O$_3$system. The lower electrodes were coated with various thickness of Ag-Pd by screen printing to investigate the effect as a diffusion barrier and deposited with Pt by sputtering on Ag-Pd. The ceramic paste was prepared by mixing powder and binder with various ratios using three roll miller. The fabricated thick films were burned out at 650$^{\circ}C$ and sintered at 950$^{\circ}C$ in the O$_2$condition for each 20, 60min after printing with 350mesh screen. The thickness of piezoelectric thick film was 15∼20 $\mu\textrm{m}$ and the Ag-Pd electrode acted as a diffusion barrier above 3 $\mu\textrm{m}$ thickness. When the lower electrode Ag-Pd was 6 $\mu\textrm{m}$ and the piezoelectric thick films were sintered by 2nd step (650$^{\circ}C$/20min and 950$^{\circ}C$/1h) using paste mixed Pb(Mg,Nb)O$_3$-Pb(Zr,Ti)O$_3$$.$ MnO$_2$+ Bi$_2$O$_3$. V$_2$O$\_$5/ and binder in the ratio of 70:30, the remnant polarization of thick film was 9.1 ${\mu}$C /cm$^2$.

  • PDF

Pilot Test of Electrocardiogram Measurement Method for Conductive Textiles Electrode Position in Bed Condition (침대 형태에서 기능성 직물 전도성 전극 위치에 대한 심전도 측정 방법의 Pilot Test)

  • Jun won, Choi;Lina A., Asante;Chang Hyun, Song;Halim, Chung;Han Sung, Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.80-84
    • /
    • 2023
  • Electrodes are one of the types of biosensors capable of measuring bio signals, such as electrocardiogram (ECG) and electromyogram (EMG) signals. These electrodes are used in various fields and offer the advantage of being able to measure ECG signals without the need for skin attachment, compared to Ag/AgCl electrodes. The purpose of this study was to evaluate the efficacy of conductive textile electrodes in collecting ECG signals in a bed-like environment. Three adult participants were involved, and a total of 30 minutes of ECG signals were collected for each participant. The collected ECG signals were analyzed to determine the heart rate, normLF and a comparison was made between the conductive textile electrodes and Ag/AgCl electrodes. As a result, the change in heart rate and normLF could be observed, and in particular, the difference between the two electrodes decreased. This study confirmed that conductive textile electrodes can effectively collect ECG signals in a bed-like environment. It is hoped that this research will lead to the development of a system that can detect various sleep-related diseases through the use of these electrodes.

Development of the 5kW Class Polymer Electrolyte Fuel Cell System for Residential Power Generation (5kW 급 주택용 고분자 연료전지 시스템)

  • Yang, Tae-Hyun;Park, Gu-Gon;Yoon, Young-Gi;Lee, Won-Yong;Yoon, Wang-Lai;Kim, Chang-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.1
    • /
    • pp.35-45
    • /
    • 2003
  • Polymer electrolyte fuel cells(PEFC) have been considered to be a suitable candidate for residential, portable and mobile applications, due to their high efficiency and power density, even at low operating temperature. KIER developed a 5kW class PEFC system for residential application and operated the system for over 1,000 hours. To develop a 5kW PEFC system, performance of a cell was improved through successive tests of single cell of small and large area. Fabrication of three 2,5 kW class stacks, design and fabrication of natural gas reformer, design of auxiliary equipments such as DC/DC converter, DC/AC inverter and humidifying units were carried out along with integration of components, operation and evaluation of total system. During the development period from 1999 to 2001, MEA(membrane electrode assembly) fabrication technologies, design and fabrication technologies for separators, stacking technologies and so on were developed, thereby providing basis for developing stacks of higher efficiency and power density in the future. Experience of development of natural gas reformer opened possibilities to use various kinds of fuels. Main results obtained from the development of a 5kW class PEFC system for residential application are summarized.

The scanned point-detecting system for three-dimensional measurement of light emitted from plasplay panel (플라즈마 디스플레이 패널에서 방출되는 광의 3차원 측정을 위한 Scanned Point-Detecting System)

  • 최훈영;이석현;이승걸
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.103-108
    • /
    • 2001
  • In this paper, we designed and made the scanned point detecting system for 3-dimensional measurement of the light emitted from plasma display panel (PDP) , and we measured and analyzed 3-dimensional light emitted from a real PDP by using this scanned point detecting system. The scanned point detecting system has a point detector with a pinhole. The light emitted from the source at the in-focus position can pass through the pinhole and be collected by detector. The light from other sources at outof-focus positions is focused at points in front of or behind the pinhole, and thus it is intercepted by the pinhole. Therefore, we can detect light information from a particular point of a PDP cell of 3-dimensional structure. We know the electric field distribution inside the PDP cell from the 3-dimensionallight intensity distribution measured by using the scanned point detecting system. As the Z axial measurement increases, the intensity of light detected increases and intensity of light detected on the inside edge of the ITa electrode is larger than outside edge of the ITa eletrode and gap of the ITa electrodes. Also, as the measurement point moves from one barrier rib to another, the detected light is weaker near to the barrier ribs than at the center between the barrier ribs. The emitted light is concentrated at the center between barrier ribs. ribs.

  • PDF

Three-Dimensional Subsurface Resistivity Profile using Electrical Resistance Tomography for Designing Grounding Grid (접지 그리드 설계를 위한 전기 저항 단층촬영법에 기반한 지표의 3차원 저항률 분포 추정)

  • Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.117-128
    • /
    • 2016
  • Installation of earth grounding system is essential to ensure personnel safety and correct operation of electrical equipment. Earth parameters, especially, soil resistivity has to be determined in designing an efficient earth grounding system. The most common applied technique to measure soil resistance is Wenner four-point method. Implementation of this method is expensive, time consuming and cumbersome as large set of measurements with variable electrode spacing are required to obtain a one dimensional resistivity plot. It is advantageous to have a method which is of low cost and provides fast measurements. In this perspective, electrical resistance tomography (ERT) is applied to estimate subsurface resistivity profile. Electrical resistance tomograms characterize the soil resistivity distribution based on the measurements from electrodes placed in the region of interest. The nonlinear ill-posed inverse problem is solved using iterated Gauss-Newton method with Tikhonov regularization. Through extensive numerical simulations, it is found that ERT offers promising performance in estimating the three-dimensional soil resistivity distribution.