• Title/Summary/Keyword: three-dimensions

Search Result 1,908, Processing Time 0.031 seconds

Exploration of Organizational Members' ESG Attitudes and Recognition of Performance Obstacles: Focusing on Members of Public Institutions (조직구성원의 ESG 태도와 성과 장애요인 인식에 관한 탐색: 공공기관(직업능력개발조직) 구성원을 중심으로)

  • Dong-tae Kim;Eun-young Lee;Jae-kyu Myung
    • Journal of Practical Engineering Education
    • /
    • v.16 no.5_spc
    • /
    • pp.747-756
    • /
    • 2024
  • The purpose of this study was to discover the desirable ESG direction of public institutions and obstacles to promoting ESG management as perceived by members within public institutions. To this end, three research questions were set and FGI was conducted on eight groups of public institution members. As a result of the FGI data analysis, 9 subfactors and 43 meaning units in 3 dimensions corresponding to the answers to the 3 research questions were derived. The first dimension, public institution members' awareness of ESG, consisted of three subfactors: ESG was recognized as an environmental protection trend related to the climate change crisis, and as a marketing tool used by companies to enhance their image. In addition, it was recognized as a newly included public institution management evaluation index. The second dimension, obstacles to the promotion of ESG in public institutions, appeared to be four subfactors: a government-dependent management system strongly influenced by the government, a rigid internal communication system in a top-down manner, the possibility of lack of sincerity in promoting ESG management, limitations of the internal human resource management system, etc. The third dimension, the desirable ESG direction of public institutions, was found to be two subfactors, including priority promotion of activities that meet the unique purpose of public institutions and ESG activities that can grow together with the region as a member of the local community. This study is significant in that, unlike existing studies that discovered positive antecedent factors that affect a company's ESG management performance, it identified factors that impede performance achievement from the perspective of the members who drive ESG.

The Effect of Attributes of Innovation and Perceived Risk on Product Attitudes and Intention to Adopt Smart Wear (스마트 의류의 혁신속성과 지각된 위험이 제품 태도 및 수용의도에 미치는 영향)

  • Ko, Eun-Ju;Sung, Hee-Won;Yoon, Hye-Rim
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.2
    • /
    • pp.89-111
    • /
    • 2008
  • Due to the development of digital technology, studies regarding smart wear integrating daily life have rapidly increased. However, consumer research about perception and attitude toward smart clothing hardly could find. The purpose of this study was to identify innovative characteristics and perceived risk of smart clothing and to analyze the influences of theses factors on product attitudes and intention to adopt. Specifically, five hypotheses were established. H1: Perceived attributes of smart clothing except for complexity would have positive relations to product attitude or purchase intention, while complexity would be opposite. H2: Product attitude would have positive relation to purchase intention. H3: Product attitude would have a mediating effect between perceived attributes and purchase intention. H4: Perceived risks of smart clothing would have negative relations to perceived attributes except for complexity, and positive relations to complexity. H5: Product attitude would have a mediating effect between perceived risks and purchase intention. A self-administered questionnaire was developed based on previous studies. After pretest, the data were collected during September, 2006, from university students in Korea who were relatively sensitive to innovative products. A total of 300 final useful questionnaire were analyzed by SPSS 13.0 program. About 60.3% were male with the mean age of 21.3 years old. About 59.3% reported that they were aware of smart clothing, but only 9 respondents purchased it. The mean of attitudes toward smart clothing and purchase intention was 2.96 (SD=.56) and 2.63 (SD=.65) respectively. Factor analysis using principal components with varimax rotation was conducted to identify perceived attribute and perceived risk dimensions. Perceived attributes of smart wear were categorized into relative advantage (including compatibility), observability (including triability), and complexity. Perceived risks were identified into physical/performance risk, social psychological risk, time loss risk, and economic risk. Regression analysis was conducted to test five hypotheses. Relative advantage and observability were significant predictors of product attitude (adj $R^2$=.223) and purchase intention (adj $R^2$=.221). Complexity showed negative influence on product attitude. Product attitude presented significant relation to purchase intention (adj $R^2$=.692) and partial mediating effect between perceived attributes and purchase intention (adj $R^2$=.698). Therefore hypothesis one to three were accepted. In order to test hypothesis four, four dimensions of perceived risk and demographic variables (age, gender, monthly household income, awareness of smart clothing, and purchase experience) were entered as independent variables in the regression models. Social psychological risk, economic risk, and gender (female) were significant to predict relative advantage (adj $R^2$=.276). When perceived observability was a dependent variable, social psychological risk, time loss risk, physical/performance risk, and age (younger) were significant in order (adj $R^2$=.144). However, physical/performance risk was positively related to observability. The more Koreans seemed to be observable of smart clothing, the more increased the probability of physical harm or performance problems received. Complexity was predicted by product awareness, social psychological risk, economic risk, and purchase experience in order (adj $R^2$=.114). Product awareness was negatively related to complexity, meaning high level of product awareness would reduce complexity of smart clothing. However, purchase experience presented positive relation with complexity. It appears that consumers can perceive high level of complexity when they are actually consuming smart clothing in real life. Risk variables were positively related with complexity. That is, in order to decrease complexity, it is also necessary to consider minimizing anxiety factors about social psychological wound or loss of money. Thus, hypothesis 4 was partially accepted. Finally, in testing hypothesis 5, social psychological risk and economic risk were significant predictors for product attitude (adj $R^2$=.122) and purchase intention (adj $R^2$=.099) respectively. When attitude variable was included with risk variables as independent variables in the regression model to predict purchase intention, only attitude variable was significant (adj $R^2$=.691). Thus attitude variable presented full mediating effect between perceived risks and purchase intention, and hypothesis 5 was accepted. Findings would provide guidelines for fashion and electronic businesses who aim to create and strengthen positive attitude toward smart clothing. Marketers need to consider not only functional feature of smart clothing, but also practical and aesthetic attributes, since appropriateness for social norm or self image would reduce uncertainty of psychological or social risk, which increase relative advantage of smart clothing. Actually social psychological risk was significantly associated to relative advantage. Economic risk is negatively associated with product attitudes as well as purchase intention, suggesting that smart-wear developers have to reflect on price ranges of potential adopters. It will be effective to utilize the findings associated with complexity when marketers in US plan communication strategy.

  • PDF

A Study on the Availability of the On-Board Imager(OBI) and Cone-Beam CT(CBCT) in the Verification of Patient Set-up (온보드 영상장치(On-Board Imager) 및 콘빔CT(CBCT)를 이용한 환자 자세 검증의 유용성에 대한 연구)

  • Bak, Jino;Park, Sung-Ho;Park, Suk-Won
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Purpose: On-line image guided radiation therapy(on-line IGRT) and(kV X-ray images or cone beam CT images) were obtained by an on-board imager(OBI) and cone beam CT(CBCT), respectively. The images were then compared with simulated images to evaluate the patient's setup and correct for deviations. The setup deviations between the simulated images(kV or CBCT images), were computed from 2D/2D match or 3D/3D match programs, respectively. We then investigated the correctness of the calculated deviations. Materials and Methods: After the simulation and treatment planning for the RANDO phantom, the phantom was positioned on the treatment table. The phantom setup process was performed with side wall lasers which standardized treatment setup of the phantom with the simulated images, after the establishment of tolerance limits for laser line thickness. After a known translation or rotation angle was applied to the phantom, the kV X-ray images and CBCT images were obtained. Next, 2D/2D match and 3D/3D match with simulation CT images were taken. Lastly, the results were analyzed for accuracy of positional correction. Results: In the case of the 2D/2D match using kV X-ray and simulation images, a setup correction within $0.06^{\circ}$ for rotation only, 1.8 mm for translation only, and 2.1 mm and $0.3^{\circ}$ for both rotation and translation, respectively, was possible. As for the 3D/3D match using CBCT images, a correction within $0.03^{\circ}$ for rotation only, 0.16 mm for translation only, and 1.5 mm for translation and $0.0^{\circ}$ for rotation, respectively, was possible. Conclusion: The use of OBI or CBCT for the on-line IGRT provides the ability to exactly reproduce the simulated images in the setup of a patient in the treatment room. The fast detection and correction of a patient's positional error is possible in two dimensions via kV X-ray images from OBI and in three dimensions via CBCT with a higher accuracy. Consequently, the on-line IGRT represents a promising and reliable treatment procedure.

Major Class Recommendation System based on Deep learning using Network Analysis (네트워크 분석을 활용한 딥러닝 기반 전공과목 추천 시스템)

  • Lee, Jae Kyu;Park, Heesung;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.95-112
    • /
    • 2021
  • In university education, the choice of major class plays an important role in students' careers. However, in line with the changes in the industry, the fields of major subjects by department are diversifying and increasing in number in university education. As a result, students have difficulty to choose and take classes according to their career paths. In general, students choose classes based on experiences such as choices of peers or advice from seniors. This has the advantage of being able to take into account the general situation, but it does not reflect individual tendencies and considerations of existing courses, and has a problem that leads to information inequality that is shared only among specific students. In addition, as non-face-to-face classes have recently been conducted and exchanges between students have decreased, even experience-based decisions have not been made as well. Therefore, this study proposes a recommendation system model that can recommend college major classes suitable for individual characteristics based on data rather than experience. The recommendation system recommends information and content (music, movies, books, images, etc.) that a specific user may be interested in. It is already widely used in services where it is important to consider individual tendencies such as YouTube and Facebook, and you can experience it familiarly in providing personalized services in content services such as over-the-top media services (OTT). Classes are also a kind of content consumption in terms of selecting classes suitable for individuals from a set content list. However, unlike other content consumption, it is characterized by a large influence of selection results. For example, in the case of music and movies, it is usually consumed once and the time required to consume content is short. Therefore, the importance of each item is relatively low, and there is no deep concern in selecting. Major classes usually have a long consumption time because they have to be taken for one semester, and each item has a high importance and requires greater caution in choice because it affects many things such as career and graduation requirements depending on the composition of the selected classes. Depending on the unique characteristics of these major classes, the recommendation system in the education field supports decision-making that reflects individual characteristics that are meaningful and cannot be reflected in experience-based decision-making, even though it has a relatively small number of item ranges. This study aims to realize personalized education and enhance students' educational satisfaction by presenting a recommendation model for university major class. In the model study, class history data of undergraduate students at University from 2015 to 2017 were used, and students and their major names were used as metadata. The class history data is implicit feedback data that only indicates whether content is consumed, not reflecting preferences for classes. Therefore, when we derive embedding vectors that characterize students and classes, their expressive power is low. With these issues in mind, this study proposes a Net-NeuMF model that generates vectors of students, classes through network analysis and utilizes them as input values of the model. The model was based on the structure of NeuMF using one-hot vectors, a representative model using data with implicit feedback. The input vectors of the model are generated to represent the characteristic of students and classes through network analysis. To generate a vector representing a student, each student is set to a node and the edge is designed to connect with a weight if the two students take the same class. Similarly, to generate a vector representing the class, each class was set as a node, and the edge connected if any students had taken the classes in common. Thus, we utilize Node2Vec, a representation learning methodology that quantifies the characteristics of each node. For the evaluation of the model, we used four indicators that are mainly utilized by recommendation systems, and experiments were conducted on three different dimensions to analyze the impact of embedding dimensions on the model. The results show better performance on evaluation metrics regardless of dimension than when using one-hot vectors in existing NeuMF structures. Thus, this work contributes to a network of students (users) and classes (items) to increase expressiveness over existing one-hot embeddings, to match the characteristics of each structure that constitutes the model, and to show better performance on various kinds of evaluation metrics compared to existing methodologies.

Primiparas만 Perceptions of Their Delivery Experience and Their Maternal-Infant Interaction : Compared According to Delivery Method (초산모의 분만유형별 분만경험에 대한 지각과 모아상호작용 과정에 관한 연구)

  • 조미영
    • Journal of Korean Academy of Nursing
    • /
    • v.20 no.2
    • /
    • pp.153-173
    • /
    • 1990
  • One of the important tasks for new parents. especially mothers, is to establish warm, mutually affirming interpersonal relationships with the new baby in the family, with the purpose of promoting the healthy development of the child and the wellbeing of the whole family. Nurses assess the quality of the behavioral characteristics of the maternal-infant interaction. This study examined the relationships between primiparas pereptions of their delivery experience and their maternal infant interaction. It compared to delivery experience of mothers having a normal vaginal delivery with those having a casearean section. The purpose was to explore the relationships between the mother's perceptions of her delivery experience with her maternal infant interaction. The aim was to contribute to the development of theoretical understanding on which to base care toward promoting the quality of maternal-infant interaction. Data were collected directly by the investigator and a trained associate from Dec. 1, 1987 to March 8, 1988. Subjects were 3 random sample of 62 mothers, 32 who had a normal vaginal delivery and 30 who had a non-elective cesarean section (but without other perinatal complications) at three general hospitals in Seoul. Instruments used were the Stainton Parent -infant Interaction Scale(1981) and the Marut and Mercer Perception of Birth Scale(1979). The first observations were made in the delivery room (for vaginally delivered mothers only), followed by day 1, day 2, day 3, and 2 weeks, 4 weeks, 6 weeks and 8 weeks after birth, for a total of 7-8 contacts(Cesarean section mothers were observed on days 4 and 5 but the data not used for analysis). Observations in the hospital were made during the hour prior to scheduled feedings. The infant was placed beside the mother. Later contacts were made at home. Data analysis was done by computer using as SPSS program and indulded X² test, paired t-test, t-test, and Pearson Correlation coefficient ; the results were as follows. 1. Mothers who had a normal vaginal delivery tended to perceive the delivery experience more positively than cesarean section mothers(p=0.002). The finding supported the hypothesis I that perception of delivery would vary according to the method of delivery. Mothers' perceptions of birth were classified into three dimensions, labor, delivery and the bady. There was a significantly different and positive perception by the vaginally delivered mothers to the delivery experience(p=0.000) but no differences for labor or the bady according to the delivery method(p=0.096, p=0.389), 2. Mothers who had a normal vaginal delivery had higher average maternal-infant interaction scores(p=0.029) than mothers who had a cesarean section. There were similar higher scores for the 1st day(p=0.042), 2nd day (p=0.009), and the 3rd day(p=0.006) after delivery but not for later times. The findings supported the hypothesis Ⅱ that there would be differences in maternal-infant interaction for mothers having vaginal and cesarean section deliveries. However these differences deccreased section deliveries. However these differences decreased over time . by eight weeks the scores for vaginal delivery mothers averaged 8.1 and for cesarean section mothers, 7.9. 3. The more highly positive the pereption of the delivery experience, the higher the maternal-infant interaction score for all subjects(F=.3206, p=.006). The findings supported the hypothesis Ⅲ that there would be correlations between perceptions of delivery and maternal-infant interaction. The maternal infant interaction was highest when the perception of the bady and deliery was positive(r=.4363, p=.000, r=.2881, p=.012). No correlations between perceptions of labor and maternal-infant interaction were found(p=0.062). 4. The daily maternal-infant interaction score for the initial contact after birth to 8 weeks postpartum had the lowest average score 5.20 and the highest 7.98(in a range of 0-10). This subjects group of mothers needed nursing intervention to promote their maternal- infant interaction. The daily scores for the maternal-infant over the period of eight weeks. However, there were significantly different increases in maternal-infant interaction only from the first to second day(p=0.000) and from the fourth to sixth weeks after birth(P=0.000). 5. When the eight items of maternal-infant interaction were evaluated separately, “Expresses feelings about her role as mother” had the highest average score, 1.64(ina range of 0-3)and “Speaks to baby” the lowest, 0.9. All items, with the possible exception of “Expresses feelings about her role as mother”, suggested the subjects' need of nursing intervention to promote maternal-infant interaction. 6. There were positive correlations between certain general charateristis, namely, both a higher economic status(p=0.002) and breast feeding(p=0.202) and maternal - infant interaction. There were positive correlations between a mother's confidence in her role as a mother and the perception of the birth experience(p=0.004). For mothers who had a cesarean section, a positive perception of the birth experience was related to the duration of her marriage(p=0.010), a wanted pregnancy (P=0.030) and her confidence in her role as a mother(p=0.000). Pereptions of birth for mothers who had a normal vaginal delivery were positive than those for mothers who had a cesarean section. The level of maternalinfant interaction for mothers delivered vaginally was higher than for cesarean section mothers. The relationship between perception of birth and materanalinfant interaction was confirmed. Cesarean section has an impact on the mother's perceived experience of birth which, in turn, is positively related to maternal-infant in turn, is positively related to maternal-infant interaction. Nursing intervention to enhance maternal-infant interaction should begin in prenatal classes with an exploration of the potential impact of cesarean section on the perceptions of the birth experience and continue throughout the perinatal and post-natal periods to promote the mother's ability to control with this crisis experience and to mobilize social support. Nursing should help transform a relatively negatively perceived experience into an accepted, positively perceived and self affirming experience which enhances the maternal-infant relationship.

  • PDF

The Impact of the Internet Channel Introduction Depending on the Ownership of the Internet Channel (도입주체에 따른 인터넷경로의 도입효과)

  • Yoo, Weon-Sang
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.1
    • /
    • pp.37-46
    • /
    • 2009
  • The Census Bureau of the Department of Commerce announced in May 2008 that U.S. retail e-commerce sales for 2006 reached $ 107 billion, up from $ 87 billion in 2005 - an increase of 22 percent. From 2001 to 2006, retail e-sales increased at an average annual growth rate of 25.4 percent. The explosive growth of E-Commerce has caused profound changes in marketing channel relationships and structures in many industries. Despite the great potential implications for both academicians and practitioners, there still exists a great deal of uncertainty about the impact of the Internet channel introduction on distribution channel management. The purpose of this study is to investigate how the ownership of the new Internet channel affects the existing channel members and consumers. To explore the above research questions, this study conducts well-controlled mathematical experiments to isolate the impact of the Internet channel by comparing before and after the Internet channel entry. The model consists of a monopolist manufacturer selling its product through a channel system including one independent physical store before the entry of an Internet store. The addition of the Internet store to this channel system results in a mixed channel comprised of two different types of channels. The new Internet store can be launched by the independent physical store such as Bestbuy. In this case, the physical retailer coordinates the two types of stores to maximize the joint profits from the two stores. The Internet store also can be introduced by an independent Internet retailer such as Amazon. In this case, a retail level competition occurs between the two types of stores. Although the manufacturer sells only one product, consumers view each product-outlet pair as a unique offering. Thus, the introduction of the Internet channel provides two product offerings for consumers. The channel structures analyzed in this study are illustrated in Fig.1. It is assumed that the manufacturer plays as a Stackelberg leader maximizing its own profits with the foresight of the independent retailer's optimal responses as typically assumed in previous analytical channel studies. As a Stackelberg follower, the independent physical retailer or independent Internet retailer maximizes its own profits, conditional on the manufacturer's wholesale price. The price competition between two the independent retailers is assumed to be a Bertrand Nash game. For simplicity, the marginal cost is set at zero, as typically assumed in this type of study. In order to explore the research questions above, this study develops a game theoretic model that possesses the following three key characteristics. First, the model explicitly captures the fact that an Internet channel and a physical store exist in two independent dimensions (one in physical space and the other in cyber space). This enables this model to demonstrate that the effect of adding an Internet store is different from that of adding another physical store. Second, the model reflects the fact that consumers are heterogeneous in their preferences for using a physical store and for using an Internet channel. Third, the model captures the vertical strategic interactions between an upstream manufacturer and a downstream retailer, making it possible to analyze the channel structure issues discussed in this paper. Although numerous previous models capture this vertical dimension of marketing channels, none simultaneously incorporates the three characteristics reflected in this model. The analysis results are summarized in Table 1. When the new Internet channel is introduced by the existing physical retailer and the retailer coordinates both types of stores to maximize the joint profits from the both stores, retail prices increase due to a combination of the coordination of the retail prices and the wider market coverage. The quantity sold does not significantly increase despite the wider market coverage, because the excessively high retail prices alleviate the market coverage effect to a degree. Interestingly, the coordinated total retail profits are lower than the combined retail profits of two competing independent retailers. This implies that when a physical retailer opens an Internet channel, the retailers could be better off managing the two channels separately rather than coordinating them, unless they have the foresight of the manufacturer's pricing behavior. It is also found that the introduction of an Internet channel affects the power balance of the channel. The retail competition is strong when an independent Internet store joins a channel with an independent physical retailer. This implies that each retailer in this structure has weak channel power. Due to intense retail competition, the manufacturer uses its channel power to increase its wholesale price to extract more profits from the total channel profit. However, the retailers cannot increase retail prices accordingly because of the intense retail level competition, leading to lower channel power. In this case, consumer welfare increases due to the wider market coverage and lower retail prices caused by the retail competition. The model employed for this study is not designed to capture all the characteristics of the Internet channel. The theoretical model in this study can also be applied for any stores that are not geographically constrained such as TV home shopping or catalog sales via mail. The reasons the model in this study is names as "Internet" are as follows: first, the most representative example of the stores that are not geographically constrained is the Internet. Second, catalog sales usually determine the target markets using the pre-specified mailing lists. In this aspect, the model used in this study is closer to the Internet than catalog sales. However, it would be a desirable future research direction to mathematically and theoretically distinguish the core differences among the stores that are not geographically constrained. The model is simplified by a set of assumptions to obtain mathematical traceability. First, this study assumes the price is the only strategic tool for competition. In the real world, however, various marketing variables can be used for competition. Therefore, a more realistic model can be designed if a model incorporates other various marketing variables such as service levels or operation costs. Second, this study assumes the market with one monopoly manufacturer. Therefore, the results from this study should be carefully interpreted considering this limitation. Future research could extend this limitation by introducing manufacturer level competition. Finally, some of the results are drawn from the assumption that the monopoly manufacturer is the Stackelberg leader. Although this is a standard assumption among game theoretic studies of this kind, we could gain deeper understanding and generalize our findings beyond this assumption if the model is analyzed by different game rules.

  • PDF

Consumer Awareness and Evaluation of Retailers' Social Responsibility: An Exploratory Approach into Ethical Purchase Behavior from a U.S Perspective (소비자인지도화령수상사회책임(消费者认知度和零售商社会责任): 종미국시각출발적도덕구매행위적탐색성연구(从美国视角出发的道德购买行为的探索性研究))

  • Lee, Min-Young;Jackson, Vanessa P.
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.1
    • /
    • pp.49-58
    • /
    • 2010
  • Corporate social responsibility has become a very important issue for researchers (Greenfield, 2004; Maignan & Ralston, 2002; McWilliams et al., 2006; Pearce & Doh 2005), and many consider it necessary for businesses to define their role in society and apply social and ethical standards to their businesses (Lichtenstein et al., 2004). As a result, a significant number of retailers have adopted CSR as a strategic tool to promote their businesses. To this end, this study sought to discover U.S. consumers' attitudes and behavior in ethical purchasing and consumption based on their subjective perception and evaluation of a retailer. The objectives of this study include: 1) determine the participants awareness of retailers corporate social responsibility; 2) assess how participants evaluate retailers corporate social responsibility; 3) examine whether participants evaluation process of retailers CSR influence their attitude toward the retailer; and 4) assess if participants attitude toward the retailers CSR influence their purchase behavior. This study does not focus on actual retailers' CSR performance because a consumer's decision making process is based on an individual assessment not an actual fact. This study examines US college students' awareness and evaluations of retailers' corporate social responsibility (CSR). Fifty six college students at a major Southeastern university participated in the study. The age of the participants ranged from 18 to 26 years old. Content analysis was conducted with open coding and focused coding. Over 100 single-spaced pages of written responses were collected and analyzed. Two steps of coding (i.e., open coding and focused coding) were conducted (Esterberg, 2002). Coding results and analytic memos were used to understand participants' awareness of CSR and their ethical purchasing behavior supported through the selection and inclusion of direct quotes that were extracted from the written responses. Names used here are pseudonyms to protect confidentiality of participants. Participants were asked to write about retailers, their aware-ness of CSR issues, and to evaluate a retailer's CSR performance. A majority (n = 28) of respondents indicated their awareness of CSR but have not felt the need to act on this issue. Few (n=8) indicated that they are aware of this issue but not greatly concerned. Findings suggest that when college students evaluate retailers' CSR performance, they use three dimensions of CSR: employee support, community support, and environmental support. Employee treatment and support were found as an important criterion in evaluation of retailers' CSR. Respondents indicated that their good experience with a retailer as an employee made them have a positive perception and attitude toward the retailer. Regarding employee support four themes emerged: employee rewards and incentives based on performance, working environment, employee education and training program, and employee and family discounts. Well organized rewards and incentives were mentioned as an important attribute. The factors related to the working environment included: how well retailers follow the rules related to working hours, lunch time and breaks was also one of the most mentioned attributes. Regarding community support, three themes emerged: contributing a percentage of sales to the local community, financial contribution to charity organizations, and events for community support. Regarding environments, two themes emerged: recycling and selling organic or green products. It was mentioned in the responses that retailers are trying to do what they can to be environmentally friendly. One respondent mentioned that the company is creating stores that have an environmentally friendly design. Information about what the company does to help the environment can easily be found on the company’s website as well. Respondents have also noticed that the stores are starting to offer products that are organic and environmentally friendly. A retailer was also mentioned by a respondent in this category in reference to how the company uses eco-friendly cups and how they are helping to rebuild homes in New Orleans. The respondents noticed that a retailer offers reusable bags for their consumers to purchase. One respondent stated that a retailer uses its products to help the environment, through offering organic cotton. After thorough analysis of responses, we found that a participant's evaluation of a retailers' CSR influenced their attitudes towards retailers. However, there was a significant gap between attitudes and purchasing behavior. Although the participants had positive attitudes toward retailers CSR, the lack of funds and time influenced their purchase behavior. Overall, half (n=28) of the respondents mentioned that CSR performance affects their purchasing decisions making when shopping. Findings from this study provide support for retailers to consider their corporate social responsibility when developing their image with the consumer. This study implied that consumers evaluate retailers based on employee, community and environmental support. The evaluation, attitude and purchase behavior of consumers seem to be intertwined. That is, evaluation is based on the knowledge the consumer has of the retailers CSR. That knowledge may influence their attitude toward the retailer and thus influence their purchase behavior. Participants also indicated that having CSR makes them think highly of the retailer, but it does not influence their purchase behavior. Price and convenience seem to surpass the importance of CSR among the participants. Implications, recommendations for future research, and limitations of the study are also discussed.

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.

Multi-level Analysis of the Antecedents of Knowledge Transfer: Integration of Social Capital Theory and Social Network Theory (지식이전 선행요인에 관한 다차원 분석: 사회적 자본 이론과 사회연결망 이론의 결합)

  • Kang, Minhyung;Hau, Yong Sauk
    • Asia pacific journal of information systems
    • /
    • v.22 no.3
    • /
    • pp.75-97
    • /
    • 2012
  • Knowledge residing in the heads of employees has always been regarded as one of the most critical resources within a firm. However, many tries to facilitate knowledge transfer among employees has been unsuccessful because of the motivational and cognitive problems between the knowledge source and the recipient. Social capital, which is defined as "the sum of the actual and potential resources embedded within, available through, derived from the network of relationships possessed by an individual or social unit [Nahapiet and Ghoshal, 1998]," is suggested to resolve these motivational and cognitive problems of knowledge transfer. In Social capital theory, there are two research streams. One insists that social capital strengthens group solidarity and brings up cooperative behaviors among group members, such as voluntary help to colleagues. Therefore, social capital can motivate an expert to transfer his/her knowledge to a colleague in need without any direct reward. The other stream insists that social capital provides an access to various resources that the owner of social capital doesn't possess directly. In knowledge transfer context, an employee with social capital can access and learn much knowledge from his/her colleagues. Therefore, social capital provides benefits to both the knowledge source and the recipient in different ways. However, prior research on knowledge transfer and social capital is mostly limited to either of the research stream of social capital and covered only the knowledge source's or the knowledge recipient's perspective. Social network theory which focuses on the structural dimension of social capital provides clear explanation about the in-depth mechanisms of social capital's two different benefits. 'Strong tie' builds up identification, trust, and emotional attachment between the knowledge source and the recipient; therefore, it motivates the knowledge source to transfer his/her knowledge to the recipient. On the other hand, 'weak tie' easily expands to 'diverse' knowledge sources because it does not take much effort to manage. Therefore, the real value of 'weak tie' comes from the 'diverse network structure,' not the 'weak tie' itself. It implies that the two different perspectives on strength of ties can co-exist. For example, an extroverted employee can manage many 'strong' ties with 'various' colleagues. In this regards, the individual-level structure of one's relationships as well as the dyadic-level relationship should be considered together to provide a holistic view of social capital. In addition, interaction effect between individual-level characteristics and dyadic-level characteristics can be examined, too. Based on these arguments, this study has following research questions. (1) How does the social capital of the knowledge source and the recipient influence knowledge transfer respectively? (2) How does the strength of ties between the knowledge source and the recipient influence knowledge transfer? (3) How does the social capital of the knowledge source and the recipient influence the effect of the strength of ties between the knowledge source and the recipient on knowledge transfer? Based on Social capital theory and Social network theory, a multi-level research model is developed to consider both the individual-level social capital of the knowledge source and the recipient and the dyadic-level strength of relationship between the knowledge source and the recipient. 'Cross-classified random effect model,' one of the multi-level analysis methods, is adopted to analyze the survey responses from 337 R&D employees. The results of analysis provide several findings. First, among three dimensions of the knowledge source's social capital, network centrality (i.e., structural dimension) shows the significant direct effect on knowledge transfer. On the other hand, the knowledge recipient's network centrality is not influential. Instead, it strengthens the influence of the strength of ties between the knowledge source and the recipient on knowledge transfer. It means that the knowledge source's network centrality does not directly increase knowledge transfer. Instead, by providing access to various knowledge sources, the network centrality provides only the context where the strong tie between the knowledge source and the recipient leads to effective knowledge transfer. In short, network centrality has indirect effect on knowledge transfer from the knowledge recipient's perspective, while it has direct effect from the knowledge source's perspective. This is the most important contribution of this research. In addition, contrary to the research hypothesis, company tenure of the knowledge recipient negatively influences knowledge transfer. It means that experienced employees do not look for new knowledge and stick to their own knowledge. This is also an interesting result. One of the possible reasons is the hierarchical culture of Korea, such as a fear of losing face in front of subordinates. In a research methodology perspective, multi-level analysis adopted in this study seems to be very promising in management research area which has a multi-level data structure, such as employee-team-department-company. In addition, social network analysis is also a promising research approach with an exploding availability of online social network data.

  • PDF