• Title/Summary/Keyword: three-dimensional stress field

Search Result 119, Processing Time 0.03 seconds

The Experimental Method of Measuring Q (Q의 실험적 측정법)

  • Kim, Dong-Hak;Lee, Jeong-Hyun;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.285-291
    • /
    • 2003
  • An experimental method to measure Q-parameter in-situ is described. The basic idea comes from the fact that the side necking near a crack tip indicates the loss of stress triaxiality, which can be scaled by Q. From the out-of-plane displacement and the in-plane strain near the surface of side necking, stress field averaged through the thickness is calculated and then Q is determined from the difference between the stress field and the HRR field corresponding to the identical J-integral. To prove the validity, three-dimensional finite element analysis has been performed for a CT configuration with side-groove. Q-value which was calculated directly from the near-tip stress field is compared with that determined by simulating the experimental procedure according to the proposed method, that is, the Q-value determined from the lateral displacement and the inplane strain. Also, the effect of location where the displacement and strain are measured is explored.

  • PDF

A viscoelastic-micropolar solid with voids and microtemperatures under the effect of the gravity field

  • Said, Samia M.
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.159-166
    • /
    • 2022
  • The model of two-dimensional plane waves is analyzed in a micropolar-thermoelastic solid with microtemperatures in the context of the three-phase-lag model, dual-phase-lag model, and the Green-Naghdi theory of type III. Harmonic wave analysis is used to hold the solution to the problem. Numerical results of the physical fields are visualized to show the effects of the gravity field, magnetic field, and viscosity. The expression for the field variables is obtained generally and represented graphically for a particular medium.

Reliability Analysis of Three-Dimensional Temporary Shoring Structures Considering Bracing Member and Member Connection Condition (가새재 및 부재 연결 조건을 고려한 3차원 가설 동바리 구조물의 신뢰성 해석)

  • Ryu, Seon-Ho;Ok, Seung-Yong;Kim, Seung-Min
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.53-61
    • /
    • 2019
  • This study performs reliability analysis of three-dimensional temporary shoring structures with three different models. The first model represents a field model which does not have diagonal bracing members. The installation of bracing members is often neglected in the field for convenience. The second model corresponds to a design model which has the bracing members with the hinge connection of horizontal and bracing members at joints. The third model is similar to the second model but the hinge connection is replaced with partial rotational stiffness. The reliability analysis results revealed that the vertical members of the three models are safe enough in terms of axial force, but the vertical and horizontal members exhibit a big difference among the three models in terms of combination stress of axial force and bi-axial bending moments. The field model showed significant increase in failure probability for the horizontal member, and thus the results demonstrate that the bracing member should be installed necessarily for the safety of the temporary shoring structures.

A Study of Stress Analysis and Interaction of Stress between Micro Flaws and Inclusions (미소결함간의 응력의 간섭과 응력장 해석)

  • 송삼홍;김진봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1259-1268
    • /
    • 1995
  • The stress distribution around micro holes and the behavior of stress interaction between micro holes are considerd in the study. Several conclusions are extracted as follows : (1) The stress interaction varies with the distance e between micro holes. When the two micro holes are spaced in such a manner that theri two closest points are separated by a distance of micro hole radius (e=1), stress distribution is affected by a opposite micro hole in all the closest region. In addition, if two closest points are seperated by twice the distance of a micro hole radius (e=2), stress distribution is affected by a opposite micro hole in the region of -0.8.leq.x/r.leq.0.8 and the interaction effect can be neglected for e=4. (2)If the depth becomes larger than the radius, or the radius varies, the shape and magnitude of stress distribution around micro holes varies. (3) Hoop stress around a micro hole for the two dimensional configuration is larger than that of the three dimensional micro hole located on the surface of material for .theta. < 60.deg., but it is reversed for .theta > 60.deg.

Development of a Three Dimensional Modulus of Rupture Test (순수 등방성 휨인장강도 시험법 개발)

  • Zi, Goang-Seup;Oh, Hong-Seub
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.399-402
    • /
    • 2007
  • The classical two dimensional modulus of rupture test was generalized to three dimensions. Using this new method, the biaxial tensile strength can be measured with only one actuator. A circular plate is used in this method unlike a prismatic beam in the classical modulus of rupture test. The stress field in this specimen is isotropic and uniform in a plane paralle1 to the bottom surface of the specimen. The relation between the applied load and the maximum stress is derived analytical1y using Timoshenko's solution. A set of experimental data is presented.

  • PDF

Accuracy Improvement of Analysis Results Obtained from Numerical Analysis Model of Continuously Reinforced Concrete Pavement (연속철근 콘크리트 포장 수치해석 모델의 해석결과 정확도 개선 방법)

  • Cho, Young Kyo;Seok, Jong Hwan;Choi, Lyn;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.73-83
    • /
    • 2016
  • PURPOSES : The purpose of this study is to develop a method for improving the accuracy of analysis results obtained from a two-dimensional (2-D) numerical analysis model of continuously reinforced concrete pavement (CRCP). METHODS : The analysis results from the 2-D numerical model of CRCP are compared with those from more rigorous three-dimensional (3-D) models of CRCP, and the relationships between the results are recognized. In addition, the numerical analysis results are compared with the results obtained from field experiments. By performing these comparisons, the calibration factors used for the 2-D CRCP model are determined. RESULTS : The results from the comparisons between 2-D and 3-D CRCP analyses show that with the 2-D CRCP model, concrete stresses can be overestimated significantly, and crack widths can either be underestimated or overestimated by a slight margin depending on the assumption of plane stress or plane strain. The behaviors of crack width in field measurements are comparable to those obtained from the numerical model of CRCP. CONCLUSIONS : The accuracy of analysis results from the 2-D CRCP model can be improved significantly by applying calibration factors obtained from comparisons with 3-D analyses and field experiments.

The influence of initial stresses on energy release rate and total electro-mechanical potential energy for penny-shaped interface cracks in PZT/Elastic/PZT sandwich circular plate-disc

  • Akbarov, Surkay D.;Cafarova, Fazile I.;Yahnioglu, Nazmiye
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.259-276
    • /
    • 2018
  • This paper studies the energies and energy release rate (ERR) for the initially rotationally symmetric compressed (or stretched) in the inward (outward) radial direction of the PZT/Elastic/PZT sandwich circular plate with interface penny-shaped cracks. The investigations are made by utilizing the so-called three-dimensional linearized field equations and relations of electro-elasticity for piezoelectric materials. The quantities related to the initial stress state are determined within the scope of the classical linear theory of piezoelectricity. Mathematical formulation of the corresponding problem and determination of the quantities related to the stress-strain state which appear as a result of the action of the uniformly normal additional opening forces acting on the penny-shaped crack's edges are made within the scope of the aforementioned three-dimensional linearized field equations solution which is obtained with the use of the FEM modelling. Numerical results of the energies and ERR and the influence of the problem parameters on these quantities are presented and discussed for the PZT- 5H/Al/PZT-5H, PZT-4/Al/PZT-4, $BaTiO_3/Al/BaTiO_3$ and PZT-5H/StPZT-5H sandwich plates. In particular, it is established that the magnitude of the influence of the piezoelectricity and initial loading on the ERR increases with crack radius length.

New estimation method of the coefficient of consolidation for the various stress conditions (다양한 응력조건을 고려한 새로운 압밀계수 평가방법)

  • Kwak, Chan-Mun;Jung, Young-Hoon;Kim, Chang-Youb;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.216-223
    • /
    • 2005
  • The coefficient of consolidation has been evaluated using the conventional oedometer tests based on the one-dimensional consolidation theory. In the field, however, the actual response of the soil will be subject to the three-dimensional condition during consolidation. In this research, a new estimation method of the coefficient of consolidation for the various stress-deformation conditions was proposed. The good agreement between the computed dissipation of pore pressure and the measured data confirms the usefulness and the applicability of the proposed method to predict the exact rate of consolidation.

  • PDF

Analysis of flow Field in a steam turbine LP/HP Bypass control Valve (증기터빈 Bypass Valve 의 유동장 해석)

  • Choi, Ji-Yong;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.437-440
    • /
    • 2005
  • In the present work, characteristics of the flow in CAGE of a steam turbine LP/HP Bypass control valve for thermal power plant are investigated. The flow field is analyzed numerically by solving steady three-dimensional Reynolds-averaged Navier-Stokes equations. Shear stress transport (SST) model is used as turbulence closure.

  • PDF

An Experimental Method for Measuring Q (Q의 실험적 측정법)

  • Kim, Dong-Hak;Lee, Jeong-Hyun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1607-1613
    • /
    • 2003
  • An experimental method to measure Q-parameter in-situ is described. The basic idea comes from the fact that the side necking near a crack tip indicates the loss of stress triaxiality, which can be scaled by Q. From the out-of-plane displacement and the in-plane strain near the surface of side necking, stress field averaged through the thickness is calculated and then Q is determined from the difference between the stress field and the HRR field corresponding to the identical J-integral. To prove the validity, three-dimensional finite element analysis has been performed for a CT configuration with side-groove. Q-value which was calculated directly from the near-tip stress field is compared with that determined by simulating the experimental procedure according to the proposed method, that is, the Q-value determined from the lateral displacement and the in-plane strain. In addition, the effect of location where the displacement and strain are measured is explored.