• Title/Summary/Keyword: three-dimensional mesh

Search Result 399, Processing Time 0.025 seconds

Verification of neutronics and thermal-hydraulic coupled system with pin-by-pin calculation for PWR core

  • Zhigang Li;Junjie Pan;Bangyang Xia;Shenglong Qiang;Wei Lu;Qing Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3213-3228
    • /
    • 2023
  • As an important part of the digital reactor, the pin-by-pin wise fine coupling calculation is a research hotspot in the field of nuclear engineering in recent years. It provides more precise and realistic simulation results for reactor design, operation and safety evaluation. CORCA-K a nodal code is redeveloped as a robust pin-by-pin wise neutronics and thermal-hydraulic coupled calculation code for pressurized water reactor (PWR) core. The nodal green's function method (NGFM) is used to solve the three-dimensional space-time neutron dynamics equation, and the single-phase single channel model and one-dimensional heat conduction model are used to solve the fluid field and fuel temperature field. The mesh scale of reactor core simulation is raised from the nodal-wise to the pin-wise. It is verified by two benchmarks: NEACRP 3D PWR and PWR MOX/UO2. The results show that: 1) the pin-by-pin wise coupling calculation system has good accuracy and can accurately simulate the key parameters in steady-state and transient coupling conditions, which is in good agreement with the reference results; 2) Compared with the nodal-wise coupling calculation, the pin-by-pin wise coupling calculation improves the fuel peak temperature, the range of power distribution is expanded, and the lower limit is reduced more.

Improving the quality of light-field data extracted from a hologram using deep learning

  • Dae-youl Park;Joongki Park
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.165-174
    • /
    • 2024
  • We propose a method to suppress the speckle noise and blur effects of the light field extracted from a hologram using a deep-learning technique. The light field can be extracted by bandpass filtering in the hologram's frequency domain. The extracted light field has reduced spatial resolution owing to the limited passband size of the bandpass filter and the blurring that occurs when the object is far from the hologram plane and also contains speckle noise caused by the random phase distribution of the three-dimensional object surface. These limitations degrade the reconstruction quality of the hologram resynthesized using the extracted light field. In the proposed method, a deep-learning model based on a generative adversarial network is designed to suppress speckle noise and blurring, resulting in improved quality of the light field extracted from the hologram. The model is trained using pairs of original two-dimensional images and their corresponding light-field data extracted from the complex field generated by the images. Validation of the proposed method is performed using light-field data extracted from holograms of objects with single and multiple depths and mesh-based computer-generated holograms.

A Study on the Reproducibility of 3D Shape Model of Garden Cultural Heritage using Photogrammetry with SNS Photographs - Focused on Soswaewon Garden, Damyang(Scenic Site No.40) - (SNS 사진과 사진측량을 이용한 정원유산의 3차원 형상 재현 가능성 연구 - 명승 제40호 담양 소쇄원(潭陽 瀟灑園)을 대상으로 -)

  • Kim, Choong-Sik;Lee, Sang-Ha
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.94-104
    • /
    • 2018
  • This study examined photogrammetric reconstruction techniques that can measure the original form of a cultural property utilizing photographs taken in the past. During the research process, photographs taken in the past as well as photograph on the internet of Soswaewon Garden in Damyang(scenic site 40) were collected and utilized. The landscaping structures of Maedae, Aiyangdan, Ogokmun Wall, and Yakjak and natural scenery Gwangseok, of which photographs can be taken from any 360 degree direction from a close distance or a far distance without any barriers in the way, were selected and tested for the possibility of reproducing three-dimensional shapes. The photography method of 151 landscape photographs (58.6%) from internet portal sites for the aforementioned five landscape subjects containing information on the date the photograph was taken, focal length, and exposure were analyzed. As a result of the analysis, it was revealed that the majority of the photographs tend to focus on important parts of each subject. In addition, we discovered that there are two or three photography methods that internet users preferred in regards to each landscape subject. For the purposes of the experiment, photographs in which a single scene consistently appears for each landscape subject and it was determined that there was a high level of preference related to the photography method were analyzed, and three-dimensional mesh shape model was produced with a photoscan program to analyze the reproducibility of three-dimensional shapes. Based on the results of the reproduction, it was relatively possible to reproduce three-dimensional shapes for artifacts such as Ogukmun wall, Maedae, and Aeyangdan, but it was impossible to reproduce three-dimensional images for natural scenery or an object that has similar texture such as Yakjak and Gwangseok. As a result of experimentation related to the reconstruction of three-dimensional shapes with the photographs taken on site using a photography method similar to that of the photographs selected as previously mentioned, there was success related to reproducing the three-dimensional shapes of Yakjak and Gwangseok, of which it was not possible to do so through the photographs that had been collected previously. In addition, through comparison of past and present images, it was possible to measure the exact sizes as well as discover any changes that have taken place. If past photographs taken by tourists or landscape architects of cultural properties can be obtained, the three-dimensional shapes from a particular period of time can be reproduced. If this technology becomes widespread, it will increase the level of accuracy and reliability in regards to measuring the past shapes of cultural landscape properties and examining any changes to the properties.

Computation of Two-Fluid Flows with Submerged hydrofoil by Interface Capturing Method (접면포착법에 의한 수중익 주위의 이층류 유동계산)

  • 곽승현
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.167-174
    • /
    • 1999
  • Numerical analysis of two-fluid flows for both water and air is carried out. Free-Surface flows with an arbitrary deformation have been simulated around two dimensional submerged hydrofoil. The computation is performed using a finite volume method with unstructured meshes and an interface capturing scheme to determine the shape of the free surface. The method uses control volumes with an arbitrary number of faces and allows cell-wise local mesh refinement. the integration in space is of second order based on midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation in time through three time levels The linear equation systems are solved by conjugate gradient type solvers and the non-linearity of equations is accounted for through picard iterations. The solution method is of pressure-correction type and solves sequentially the linearized momentum equations the continuity equation the conservation equation of one species and the equations or two turbulence quantities.

  • PDF

Sweep-Based Plausible Elastic Deformations

  • Yoon, Seung-Hyun;Lim, Choong-Gyoo;Kim, Myung-Soo
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.152-154
    • /
    • 2008
  • We present a simple and efficient technique for a plausible elastic deformation of three-dimensional objects. An elastic sweep surface is constructed by interpolating key cross sections with positions, orientations, and boundary shapes determined by physical simulation of simple mass-spring systems. The deformable parts of an object are approximated by the elastic sweep surfaces, and the vertices of the deformable parts are bound to nearby sweep surfaces. As an external force is applied, the corresponding parts of an object change their shapes elastically. We demonstrate the effectiveness of our technique and show its real-time performance on mesh objects.

  • PDF

Prediction of Defect Formation in Ring Rolling by the Three-Dimensional Rigid-Plastic Finite Element Method (3차원 강소성 유한요소법을 이용한 환상압연공정중 형상결함의 예측)

  • Moon Ho Keun;Chung Jae Hun;Park Chang Nam;Joun Man Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1492-1499
    • /
    • 2004
  • In this paper, defect formation in ring rolling is revealed by computer simulation of ring rolling processes. The rigid-plastic finite element method is employed for this study. An analysis model having relatively fine mesh system near the roll gap is used for reducing the computational time and a scheme of minimizing the volume change is applied. The formation of the central cavity formation defect in ring rolling of a taper roller bearing outer race and the polygonal shape defect in ring rolling of a ball bearing outer race has been simulated. It has been seen that the results are qualitatively good with actual phenomena.

An Adaptive Mesh Refinement Scheme for 3D Non-Linear Finite Element Analysis of Magnetostatic Problems (3차원 비선형 정자장 문제의 유한요소 해석을 위한 적응 요소분할 기법)

  • Choi, Yong-Kwon;Seop, Ryu-Jae;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.306-313
    • /
    • 2006
  • A three dimensional adaptive finite element refinement algorithm is developed for non-linear magnetostatic field problems. In the method, the edge elements are used for finite element formulation, and the local error in each element is estimated from the fact that the tangential components of magnetic field intensity and the normal components of magnetic flux density should be continuous at the interface of the two adjacent elements. Based on the estimated error, the elements which have big error are divided into several elements using bisection method. The effectiveness of the developed algorithm is proved through numerical examples.

A Study of Parallel Implementations of the Chimera Method using Unsteady Euler Equations (비정상 Euler 방정식을 이용한 Chimera 기법의 병렬처리에 관한 연구)

  • Cho K. W.;Kwon J. H.;Lee S.S
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.52-62
    • /
    • 1999
  • The development of a parallelized aerodynamic simulation process involving moving bodies is presented. The implementation of this process is demonstrated using a fully systemized Chimera methodology for steady and unsteady problems. This methodology consists of a Chimera hole-cutting, a new cut-paste algorithm for optimal mesh interface generation and a two-step search method for donor cell identification. It is fully automated and requires minimal user input. All procedures of the Chimera technique are parallelized on the Cray T3E using the MPI library. Two and three-dimensional examples are chosen to demonstrate the effectiveness and parallel performance of this procedure.

  • PDF

Design and Analysis of Hollow Section Extrusion using Mismatching Refinement with Domain Decomposition (영역분할에 의한 불일치 격자세분화 기법을 이용한 중공형 압출공정의 설계 및 해석)

  • Park, Geun;Yang, Dong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1016-1023
    • /
    • 2000
  • The present work is concerned with three-dimensional finite element analysis of the hollow section extrusion process using a porthole die. The effects of related design parameters are discussed through the finite element simulation for extrusion of a triply-connected rectangular tubular section. For economic computation, mismatching refinement, an efficient domain decomposition method with different mesh density for each subdomain, is implemented. In order to obtain the uniform flow at the outlet, design parameters such as the hole size and the hole position are investigated and compared through the numerical analysis. Comparing the velocity distribution with that of the original design, it is concluded that the design modification enables more uniform flow characteristics. The analysis results are then successfully reflected on the industrial porthole die design.

FE Analysis of Three Dimensional Backward Extrusion Using the ALE description (ALE 묘사에 왜한 3차원 후방압출 해석)

  • 정상원;정용호;김규하;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.628-631
    • /
    • 2002
  • This paper has executed FE-analysis to review the feasibility for developing the process, which produces the narrow-cubic type cans, using the Backward Impact Extrusion process instead of using current process, multi-stage deep drawing. Proposes an analysis method by applying ALE(Arbitrary Lagrangian-Eulerian) description to non-axisymmetric extrusion. which is appreciated as one of good solution to mesh distortion in case of the large deformation plasticity process that has mass flux, and considers the factors which affects forming-loads related to punch velocity and fulid status of material.

  • PDF