• 제목/요약/키워드: three-dimensional free vibration

검색결과 126건 처리시간 0.022초

끝단 질량과 일반적인 단부조건을 갖는 변단면 보의 자유진동 (Free Vibrations of Tapered Beams with General Boundary Conditions and Tip Masses)

  • 오상진;이병구;박광규;이종국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.802-807
    • /
    • 2003
  • The purpose of this paper is to investigate the free vibration characteristics of tapered beams with translational and rotational springs and tip masses at the ends. The beam model is based on the classical Bernoulli-Euler beam theory. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest three natural frequencies are calculated over a wide range of non-dimensional system parameters: the translational spring parameter, the rotational spring parameter, the mass ratio and the dimensionless mass moment of inertia.

  • PDF

Enhanced finite element modeling for geometric non-linear analysis of cable-supported structures

  • Song, Myung-Kwan;Kim, Sun-Hoon;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • 제22권5호
    • /
    • pp.575-597
    • /
    • 2006
  • Enhanced three-dimensional finite elements for geometrically nonlinear analysis of cable-supported structures are presented. The cable element, derived by using the concept of an equivalent modulus of elasticity and assuming the deflection curve of a cable as catenary function, is proposed to model the cables. The stability functions for a frame member are modified to obtain a numerically stable solution. Various numerical examples are solved to illustrate the versatility and efficiency of the proposed finite element model. It is shown that the finite elements proposed in this study can be very useful for geometrically nonlinear analysis as well as free vibration analysis of three-dimensional cable-supported structures.

임의의 곡률과 변두께를 갖는 두꺼운 축대칭 회전 셸의 3차원적 장방정식, 운동 방정식, 에너지 범함수 (Three-Dimensional Field Equations, Equations of Motion, and Energy Functionals for Thick Shells of Revolution with Arbitrary Curvature and Variable Thickness)

  • 강재훈;이은택;양근혁
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.156-166
    • /
    • 2001
  • This work uses tensor calculus to derive a complete set of three-dimensional field equations well-suited for determining the behavior of thick shells of revolution having arbitrary curvature and variable thickness. The material is assumed to be homogeneous, isotropic and linearly elastic. The equations are expressed in terms of coordinates tangent and normal to the shell middle surface. The relationships are combined to yield equations of motion in terms of orthogonal displacement components taken in the meridional, normal and circumferential directions. Strain energy and kinetic energy functionals are also presented. The equations of motion and energy functionals may be used to determine the static or dynamic displacements and stresses in shells of revolution, including free and forced vibration and wave propagation.

  • PDF

고정과 자유경계조건의 조합을 고려한 직사각형 복합적층판의 3차원 진동해석 (Three-Dimensional Vibration Analysis of Rectangular Laminated Composite Plates with Combination of Clamped and Free Boundary Conditions)

  • 김주우
    • 한국강구조학회 논문집
    • /
    • 제18권2호
    • /
    • pp.161-171
    • /
    • 2006
  • 본 논문은 고정과 자유 경계의 다양한 조합을 갖는 직사각형 복합적층판의 고유진동에하고 있다. 본 연구에서는 수학적으로 완전한 특성직교다항식으로 표현되는 근사변위와 Ritz법을 이용하여 Lagrange 범함수의 정상값을 구하였다. 3차원 모델의 정확성이 무차원 진동수의 수렴도를 검토하여 이루어졌으며, 또한 기존 문헌상의 해석결과와의 비교를 통하여 진동수의 정확성을 검토하였다. 본 논문에서 제시된 3차원 진동수의 결과를 이용하여 복합적층판의 기하 및 재료에 관한 매개변수 즉, 형상비(${\mathcal{a/b}}$), 폭두께비(${\mathcal{a/h}}$), 재료의 직교이방성, 플라이 수(${\mathcal{N}}$), 섬유배향각(${\theta}$) 및 적층순서가 미치는 효과를 설명하였다.

변두께를 갖는 두꺼운 환형판의 삼차원적 리츠방법에 의한 진동수와 모드형상 (Frequencies and Mode Shapes of Annular Plates tilth Variable Thickness by the Ritz Method in Three-Dimensional Analysis)

  • 양근혁;강재훈
    • 한국소음진동공학회논문집
    • /
    • 제11권5호
    • /
    • pp.89-100
    • /
    • 2001
  • The Ritz method Is applied In a three-dimensional (3-D) analysis to obtain accurate frequencies for thick. linearly tapered. annular plates. The method is formulated for annular plates haying any combination of free or fixed boundaries at both Inner and outer edges. Admissible functions for the three displacement components are chosen as trigonometric functions in the circumferential co-ordinate. and a1gebraic polynomials in the radial and thickness co-ordinates. Upper bound convergence of the non-dimensional frequencies to the exact values within at least four significant figures is demonstrated. Comparisons of results for annular plates with linearly varying thickness are made with ones obtained by others using 2-D classical thin place theory. Extensive and accurate ( four significant figures ) frequencies are presented 7or completely free. thick, linearly tapered annular plates haying ratios of average place thickness to difference between outer radius (a) and inner radius (b) radios (h$_{m}$/L) of 0.1 and 0.2 for b/L=0.2 and 0.5. All 3-D modes are included in the analyses : e.g., flexural, thickness-shear. In-plane stretching, and torsional. Because frequency data liven is exact 7o a\ulcorner least four digits. It is benchmark data against which the results from other methods (e.g.. 2-D 7hick plate theory, finite element methods. finite difference methods) and may be compared. Throughout this work, Poisson\`s ratio $\upsilon$ is fixed at 0.3 for numerical calculations.s.

  • PDF

실험모드해석에 의한 승용차용 레디얼 타이어의 3차원 진동특성 (Experimental Modal Analysis for 3-D Vibration Characteristics of Radial Tire for Passenger Car under Free-Suspension)

  • 김용우;남진영
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.227-236
    • /
    • 2002
  • We have performed two kinds of experimental modal analyses fur a radial tire for passenger car under free-suspension. One is the modal analysis to obtain three-dimensional modes of tire using accelerometers and the other is the one to identify cavity resonance frequency using a pressure sensor. From the first analysis, we have obtained the three-dimensional natural modes, which makes it possible to grasp the features of the modes and to classify the vibrational modes into symmetric, non-symmetric, and antisymmetric modes in a simple way by using the experimental results. From the first and the second experimental analyses we have identified the cavity resonance frequency and its three-dimensional mode shape.

선체수평진동(船體水平振動)에 있어서의 부가질량(附加質量) 3차원수정계수(次元修正係數) (Three Dimensional Correction Factors for the Added Mass in the Horizontal Vibration of Ships)

  • 김극천;유병건
    • 대한조선학회지
    • /
    • 제11권1호
    • /
    • pp.9-16
    • /
    • 1974
  • To contribute towards more accurate estimation of the virtual inertia coefficient for the horizontal vibration of ships, three dimensional correction factor $J_H$ for the added mass of finitely long elliptic prismatic bars in horizontal vibration in a free surface of an ideal fluid are calculated. In the problem formulation Dr. T. Kumai's quasi-finite length concept[1,11,12] is employed. Now that, in Dr. Kumai's work[1] for the horizontal vibration the mathematical model was a circular cylinder, the principal aim of the authors' work is to investigate the influence of the beam-draft ratio B/T on $J_H$. The numerical results of this work are shown in Fig.3 graphically, from which we may recognize that the influence of B/T on $J_H$ is remarkable as much as that of the length-draft ratio L/T(refer to Fig.1 also). In Fig.3 the curves for B/T=2.00 are of those based on Dr. Kumai's result[1]. On the other hand, the experimental data obtained by Burril et al.[9] for the horizontal vibration of finitely long prismatic bars of various cross-section shapes are compared with the theoretical added mass coefficients defined by combination of the authors' $J_H$ from Fig.3 and two dimensional coefficients $C_H$ obtained by Lewis form approximation for the corresponding sections. They are in reasonable correspondence with each other as shown in Fig.2. Finally, considering that the longitudinal profile of full-form ship's hull is well resembled to that of an elliptic cylinder and that the influences of other factors such as the sectional area coefficient and the shape of section contour itself can be well merged in the two dimensional added mass coefficient, the authors recommend that the data given in Fig.3 may be successfully adopted for the three dimensional correction factor the added mass in the horizontal vibration of hull-form ships.

  • PDF

Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation

  • Fadodun, Odunayo O.
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.303-309
    • /
    • 2019
  • This study investigates axisymmetric fractional vibration of an isotropic hyperelastic semi-linear thin disc with a view to examine effects of finite deformation associated with the material of the disc and effects of fractional vibration associated with the motion of the disc. The generalized three-dimensional equation of motion is reduced to an equivalent time fraction one-dimensional vibration equation. Using the method of variable separable, the resulting equation is further decomposed into second-order ordinary differential equation in spatial variable and fractional differential equation in temporal variable. The obtained solution of the fractional vibration problem under consideration is described by product of one-parameter Mittag-Leffler and Bessel functions in temporal and spatial variables respectively. The obtained solution reduces to the solution of the free vibration problem in literature. Finally, and amongst other things, the Cauchy's stress distribution in thin disc under finite deformation exhibits nonlinearity with respect to the displacement fields whereas in infinitesimal deformation hypothesis, these stresses exhibit linear relation with the displacement field.

Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach

  • Benjeddou, Ayech;Guerich, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • 제6권2호
    • /
    • pp.169-187
    • /
    • 2019
  • This work presents a practical detailed finite element (FE) approach for the three-dimensional (3D) free-vibration analysis of actual aircraft and spacecraft-type lightweight and thin honeycomb sandwich panels. It consists of calling successively in $MATLAB^{(R)}$, via a developed user-friendly GUI, a detailed 3D meshing tool, a macrocommands language translator and a commercial FE solver($ABAQUS^{(R)}$ or $ANSYS^{(R)}$). In contrary to the common practice of meshing finely the faces and core cells, the proposed meshing tool represents each wall of the actual hexagonal core cells as a single two-dimensional (2D) 4 nodes quadrangularshell element or two 3 nodes triangular ones, while the faces meshes are obtained simply using the nodes at the core-faces interfaces. Moreover, as the same 2D FE interpolation type is used for meshing the core and faces, this leads to an automatic handling of their required FE compatibility relations. This proposed approach is applied to a sample made of very thin glass fiber reinforced polymer woven composite faces and a thin aluminum alloy hexagonal honeycomb core. The unknown or incomplete geometric and materials properties are first collected through direct measurements, reverse engineering techniques and experimental-FE modal analysis-based inverse identification. Then, the free-vibrations of the actual honeycomb sandwich panel are analyzed experimentally under different boundary conditions and numerically using different mesh basic cell shapes. It is found that this approach is accurate for the first few modes used for pre-design purpose.

구형 중공단면을 갖는 원호아치의 자유진동 해석 (Free Vibration Analysis of Circular Arches with Rectangular Hollow Section)

  • 이태은;이병구;박광규;윤희민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.50-53
    • /
    • 2008
  • The differential equations governing free vibrations of the elastic arches with rectangular hollow section are derived in polar coordinates, in which the effect of rotatory inertia is included. Natural frequencies is computed numerically for circular arches with both clamped ends and both hinged ends. The lowest four natural frequency parameters are reported, with the rotatory inertia, as functions of three non-dimensional system parameters: the breadth ratio, the thickness ratio and the shape ratio.

  • PDF