• Title/Summary/Keyword: three dimensional space recognition

Search Result 53, Processing Time 0.532 seconds

Design of Optimized pRBFNNs-based Face Recognition Algorithm Using Two-dimensional Image and ASM Algorithm (최적 pRBFNNs 패턴분류기 기반 2차원 영상과 ASM 알고리즘을 이용한 얼굴인식 알고리즘 설계)

  • Oh, Sung-Kwun;Ma, Chang-Min;Yoo, Sung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.749-754
    • /
    • 2011
  • In this study, we propose the design of optimized pRBFNNs-based face recognition system using two-dimensional Image and ASM algorithm. usually the existing 2 dimensional face recognition methods have the effects of the scale change of the image, position variation or the backgrounds of an image. In this paper, the face region information obtained from the detected face region is used for the compensation of these defects. In this paper, we use a CCD camera to obtain a picture frame directly. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. AdaBoost algorithm is used for the detection of face image between face and non-face image area. We can butt up personal profile by extracting the both face contour and shape using ASM(Active Shape Model) and then reduce dimension of image data using PCA. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of RBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to real-time face image database and then demonstrated from viewpoint of the output performance and recognition rate.

Design of pRBFNNs Pattern Classifier-based Face Recognition System Using 2-Directional 2-Dimensional PCA Algorithm ((2D)2PCA 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jin, Yong-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.195-201
    • /
    • 2014
  • In this study, face recognition system was designed based on polynomial Radial Basis Function Neural Networks(pRBFNNs) pattern classifier using 2-directional 2-dimensional principal component analysis algorithm. Existing one dimensional PCA leads to the reduction of dimension of image expressed by the multiplication of rows and columns. However $(2D)^2PCA$(2-Directional 2-Dimensional Principal Components Analysis) is conducted to reduce dimension to each row and column of image. and then the proposed intelligent pattern classifier evaluates performance using reduced images. The proposed pRBFNNs consist of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with the aid of fuzzy c-means clustering. In the conclusion part of rules. the connection weight of RBFNNs is represented as the linear type of polynomial. The essential design parameters (including the number of inputs and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. Using Yale and AT&T dataset widely used in face recognition, the recognition rate is obtained and evaluated. Additionally IC&CI Lab dataset is experimented with for performance evaluation.

Interactive drawing with user's intentions using image segmentation

  • Lim, Sooyeon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.73-80
    • /
    • 2018
  • This study introduces an interactive drawing system, a tool that allows user to sketch and draw with his own intentions. The proposed system enables the user to express more creatively through a tool that allows the user to reproduce his original idea as a drawing and transform it using his body. The user can actively participate in the production of the artwork by studying the unique formative language of the spectator. In addition, the user is given an opportunity to experience a creative process by transforming arbitrary drawing into various shapes according to his gestures. Interactive drawing systems use the segmentation of the drawing image as a way to extend the user's initial drawing idea. The system includes transforming a two-dimensional drawing into a volume-like form such as a three-dimensional drawing using image segmentation. In this process, a psychological space is created that can stimulate the imagination of the user and project the object of desire. This process of drawing personification plays a role of giving the user familiarity with the artwork and indirectly expressing his her emotions to others. This means that the interactive drawing, which has changed to the emotional concept of interaction beyond the concept of information transfer, can create a cooperative sensation image between user's time and space and occupy an important position in multimedia society.

Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks (PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계)

  • Oh, Sung-Kwun;Yoo, Sung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.

A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image (실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Seok, Jin-Wook;Kim, Ki-Sang;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

Design of Digits Recognition System Based on RBFNNs : A Comparative Study of Pre-processing Algorithms (방사형 기저함수 신경회로망 기반 숫자 인식 시스템의 설계 : 전처리 알고리즘을 이용한 인식성능의 비교연구)

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.416-424
    • /
    • 2017
  • In this study, we propose a design of digits recognition system based on RBFNNs through a comparative study of pre-processing algorithms in order to recognize digits in handwritten. Histogram of Oriented Gradient(HOG) is used to get the features of digits in the proposed digits recognition system. In the pre-processing part, a dimensional reduction is executed by using Principal Component Analysis(PCA) and (2D)2PCA which are widely adopted methods in order to minimize a loss of the information during the reduction process of feature space. Also, The architecture of radial basis function neural networks consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, the connection weights are used as the extended type of polynomial expression such as constant, linear, quadratic and modified quadratic. By using MNIST handwritten digit benchmarking database, experimental results show the effectiveness and efficiency of proposed digit recognition system when compared with other studies.

The Modern Perspective in Fashion Illustration (패션일러스트레이션에 나타난 현대적 원근법)

  • 박선희;유영선
    • Journal of the Korean Society of Costume
    • /
    • v.53 no.7
    • /
    • pp.57-68
    • /
    • 2003
  • The purpose of this study is to develop a creative perspective technique in fashion illustration through analyzing perspective in visual art experienced a great variety. This study was analyzed by examining the general theories based on the discovery of perspective and investigating the modern perspective in fashion illustration related to the method of spatial expression in visual art. A complex perspective of existing perspective gives the effect of reapperance of actual space and three-dimentional form in a plane. Because of being used as not only one perspective technique but also some perspectives technique, its expression can be more realistic. An amplified perspective gives the effect of visual illusion just like being suck in space inside and come out from screen outside by distorting the human body. A confused perspective of space gives the visual illusional effect of collapsing actual space and misunderstanding three-dimensional form by distorting the form of the space and changing the nature as an object of fashion. A reiterated or duplicated perspective gives effect of interpreting invisible space as imaginary space by overlapping and eliminating the object of fashion. An irrational perspective of spatial illusion gives the effect of disorganization experienced thinking by strange shapes and new recognition of irrational space by extraordinary visual connection. It has a tendency to surrealism. In conclusion, the modern perspective in fashion illustration has made the best use of not only new perspective since 1980, but general perspective before 1980. By the modern perspective expression. the viewer has made a chance to experience imaginary spaces indirectly, and the author has been able to express emotions by his or her new attempt in the screen.

Trajectory Recognition and Tracking for Condensation Algorithm and Fuzzy Inference (Condensation 알고리즘과 퍼지 추론을 이용한 이동물체의 궤적인식 및 추적)

  • Kang, Suk-Bum;Yang, Tae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.402-409
    • /
    • 2007
  • In this paper recognized for trajectory using Condensation algorithm. In this pater used fuzzy controller for recognized trajectory using fuzzy reasoning. The fuzzy system tract to the three-dimensional space for raw and roll movement. The joint angle ${\theta}_1$ of the manipulator rotate from $0^{\circ}\;to\;360^{\circ}$, and the joint angle ${\theta}_2$ rotate from $0^{\circ}\;to\;180^{\circ}$. The moving object of velocity display for recognition without error using Condensation algorithm. The tracking system demonstrated the reliability of proposed algorithm through simulation against used trajectory.

A Study on the Formative Character of Cinema Costume from the Theoretical Perspectives of Wölfflin and Delong (Wölfflin과 Delong 이론을 통해 고찰한 영화의상의 형태적 특성 연구)

  • Yun, Ji-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.7
    • /
    • pp.1140-1151
    • /
    • 2009
  • This study researches the formative character of 1920's fashion through cinema costumes from the perspective of the theories of W$\"{o}$lfilin and Delong. This study organizes a new perspective such as closed form & open form, part recognition & whole recognition, and flat & rounded to analyze the characteristics of form in the costumes of 'The Great Gatsby', 'Chariots of Fire', and 'Chicago'. The 1920's style in the fashion history is a closed form and flat because of simplicity and functionality. The costumes in Chariots of Fire' that focuses on the reappearance of 1920's fashion is a flat and closed form. However, the costumes of 'The Great Gatsby' that presents a symbolic meaning and 'Chicago' that expresses a splendid look are an open and rounded form. Evening dresses are open, with whole recognition and a rounded form because of sheer fabrics, beading, uneven hemlines, and lighting. Daytime dresses are a closed form and flat because of heavyweight fabrics, dark or achromatic colors and non-patterns. Also, open form and rounded, closed form and flat have a similar distribution in diagrams. When the viewer recognizes the form of clothes, they react in a similar way to two-dimensional and three-dimensional presentations that shows that the form of clothes is recognized by the relation with the body. In addition, this study researches the connection between diverse elements such as clothes, body, movements, space, and external elements such as lighting.

On-line Signature Recognition Using Statistical Feature Based Artificial Neural Network (통계적 특징 기반 인공신경망을 이용한 온라인 서명인식)

  • Park, Seung-Je;Hwang, Seung-Jun;Na, Jong-Pil;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.106-112
    • /
    • 2015
  • In this paper, we propose an on-line signature recognition algorithm using fingertip point in the air from the depth image acquired by Kinect. We use ten statistical features for each X, Y, Z axis to react to changes in Shifting and Scaling of the signature trajectories in three-dimensional space. Artificial Neural Network is a machine learning algorithm used as a tool to solve the complex classification problem in pattern recognition. We implement the proposed algorithm to actual on-line signature recognition system. In experiment, we verify the proposed method is successful to classify 4 different on-line signatures.