• Title/Summary/Keyword: three dimensional scanner

Search Result 263, Processing Time 0.022 seconds

Anterior and Posterior Overjet for Clinical Arch Coordination using 3-dimensional Analysis

  • Lee, Young-Wuk;Bayome, Mohamed;Baek, Seung-Hak;Kook, Yoon-Ah
    • Journal of Korean Dental Science
    • /
    • v.2 no.2
    • /
    • pp.18-23
    • /
    • 2009
  • Introduction : The purposes of this study were to analyze the differences between the anterior and posterior overjets using bracket slot points, and compare two methods of overjet calculation according to different reference points using clinical bracket points on three-dimensional digital models. Methods : A total of 35 normal occlusion models were scanned using a three-dimensional scanner (Orapix$^{(R)}$, Orapix Co., Ltd, Seoul, Korea) and then, virtual brackets (0.022" Slot MBT preadjusted brackets, 3 M Co.CA. USA) were placed on the digital models using virtual setup program (3Txer$^{(R)}$ ver. 1.9.6, Orapix co., Ltd). Archwire-like curves were designed to analyze labial and buccal overjet. Results : There were no statistically significance differences between the right and left overjet and between genders. The average overjet was found to be $1.67{\pm}0.85mm$ at the central incisor area, $2.16{\pm}0.88mm$ at the second premolar and $1.53{\pm}0.71mm$ at the first molar. Conclusion : It is recommended that overjet of individualized upper and lower arch to be 2.0mm at the anterior and posterior teeth.

  • PDF

Three dimensional deformation of dry-stored complete denture base at room temperature

  • Lim, Seo-Ryeon;Lee, Joon-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.296-303
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate whether there is any typical deformation pattern existing in complete denture when it was dried by using the 3D scanner and surface matching program. MATERIALS AND METHODS. A total of 28 denture bases were fabricated with heat curing acrylic resin (each 14 upper and lower denture bases), and 14 denture bases (each 7 upper and lower denture bases) were stored in the water bottle (water stored), and another 14 denture bases were stored in the air (dry stored). Each specimen was scanned at $1^{st}$ day after deflasking, $14^{th}$ day after deflasking, and $28^{th}$ day after deflasking, and digitalized. Three dimensional deformation patterns were acquired by comparison of the data within storage group using surface matching program. For evaluating differences between groups, these data were compared statisticallyusing Kruskal Wallis and Mann Whitney-U test (${\alpha}$=.05). RESULTS. When evaluating 3D deformation of denture base, obvious deformations were not found in maxillary and mandibular water storage group. However, in dry stored group, typical deformation pattern was detected as storage time passes. It occurred mostly in first two weeks. Major deformations were found in the bilateral posterior area in both maxillary and mandibular group. In maxillary dry stored group, a statistical significance was found. CONCLUSION. It was proved that in both upper and lower denture bases, dry storage caused more dimensional deformation than water storage with typical pattern.

Comparison of 3D accuracy of three different digital intraoral scanners in full-arch implant impressions

  • Ozcan Akkal;Ismail Hakki Korkmaz;Funda Bayindir
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.4
    • /
    • pp.179-188
    • /
    • 2023
  • PURPOSE. This in vitro study aimed to evaluate the performance of digital intraoral scanners in a completely edentulous patient with angled and parallel implants. MATERIALS AND METHODS. A total of 6 implants were placed at angulations of 0°, 5°, 0°, 0°, 15°, and 0° in regions #36, #34, #32, #42, #44, and #46, respectively, in a completely edentulous mandibular polyurethane model. Then, the study model created by connecting a scan body on the implants was scanned using a model scanner, and a 3D reference model was obtained. Three different intraoral scanners were used for digital impressions (PS group, TR group, and CS group, n = 10 in each group). The distances and angles between the scan bodies in these measurement groups were measured. RESULTS. While the Primescan (PS) impression group had the highest accuracy with 38 ㎛, the values of 104 ㎛ and 171 ㎛ were obtained with Trios 4 IOSs (TR) and Carestream 3600 (CS), respectively (P = .001). The CS scanner constituted the impression group with the highest deviation in terms of accuracy. In terms of dimensional differences in the angle parameter, a statistically significant difference was revealed among the mean deviation angle values according to the scanners (P < .001). While the lowest angular deviation was obtained with the PS impression group with 0.185°, the values of 0.499° and 1.250° were obtained with TR and CS, respectively. No statistically significant difference was detected among the impression groups in terms of precision values (P > .05). CONCLUSION. A statistically significant difference was found among the three digital impression groups upon comparing the impression accuracy. Implant angulation affected the impression accuracy of the digital impression groups. The most accurate impressions in terms of both distance and angle deviation were obtained with the PS impression group.

A three-dimensional finite element analysis of the relationship between masticatory performance and skeletal malocclusion

  • Park, Jung-Chul;Shin, Hyun-Seung;Cha, Jung-Yul;Park, Jong-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.1
    • /
    • pp.8-13
    • /
    • 2015
  • Purpose: The aim of this study was to evaluate the transfer of different occlusal forces in various skeletal malocclusions using finite element analysis (FEA). Methods: Three representative human cone-beam computed tomography (CBCT) images of three skeletal malocclusions were obtained from the Department of Orthodontics, Yonsei University Dental Hospital, Seoul, South Korea. The CBCT scans were read into the visualization software after separating bones and muscles by uploading the CBCT images into Mimics (Materialise). Two separate three-dimensional (3D) files were exported to visualize the solid morphology of skeletal outlines without considering the inner structures. Individual dental impressions were taken and stone models were scanned with a 3D scanner. These images were integrated and occlusal motions were simulated. Displacement and Von Mises stress were measured at the nodes of the FEA models. The displacement and stress distribution were analyzed. FEA was performed to obtain the 3D deformation of the mandibles under loads of 100, 150, 200, and 225 kg. Results: The distortion in all three skeletal malocclusions was comparable. Greater forces resulted in observing more distortion in FEA. Conclusions: Further studies are warranted to fully evaluate the impact of skeletal malocclusion on masticatory performance using information on muscle attachment and 3D temporomandibular joint movements.

Comparative evaluation of the fitness of anterior and posterior interim crowns fabricated by additive manufacturing (적층가공 방식으로 제작한 전치와 구치 임시보철물의 적합도 비교)

  • Park, Young-Dae;Kang, Wol
    • Journal of Technologic Dentistry
    • /
    • v.43 no.4
    • /
    • pp.153-159
    • /
    • 2021
  • Purpose: The purpose of this study was to assess the fitness of anterior and posterior interim crowns fabricated by three different additive manufacturing technologies. Methods: The working model was digitized, and single crowns (maxillary right central incisor and maxillary right first molar) were designed using computer-aided design software (DentalCad 2.2; exocad). On each abutment, interim crowns (n=60) were fabricated using three types of additive manufacturing technologies. Then, the abutment appearance and internal scan data of the interim crown was obtained using an intraoral scanner. The fitness of the interim crowns were evaluated by using the superimposition of the three-dimensional scan data (Geomagic Control X; 3D Systems). The one-way analysis of variance and Tukey posterior test were used to compare the results among groups (α=0.05). Results: A significant difference was found in the fitness of the interim crowns according to the type of additive manufacturing technology (p<0.05). The posterior interim crown showed smaller root mean square value than the anterior interim crown. Conclusion: Since the fitness of the posterior interim crown produced by three types of additive manufacturing technology were all within clinically acceptable range (<120 ㎛), it can be sufficiently used for the fabrication of interim crowns.

A Study on the Dressed Shapes of the Blouse with Short Sleeves and Sleeveless according to Arm Movement Using 3-D Scanner (팔 동작에 따른 소매유무별 블라우스 착의형상의 3차원적 파악)

  • Lee, Myung-Hee;Matsuyama, Yoko
    • Fashion & Textile Research Journal
    • /
    • v.8 no.2
    • /
    • pp.209-213
    • /
    • 2006
  • The 3-D information is useful as basic data which has been utilized in the development of simulating technology as fit-simulation. The experiment is designed to take some useful data on the variant shapes which contribute in simulating the adaptability of the clothes. The general figure of the clothes are made after the figure of the basic standing posture of the human body. The shape of the clothes fits with kinetic characteristic of the human body as the form of the clothes gets twisted, the ease of the clothes changes, and the clothes itself expands. We studied the dressed shapes of blouse according to two types of the arm movement(basic posture and reach forward) and three types of clothes(foundation, blouse with short sleeves and sleeveless) in the sit-down-posture. We accomplished some experimental data on three-dimensional measurement of the dressing shapes using TDS-3100 3-D scanner made in Japan PULSTECH. It is considered that the variant of shapes and distribution of gaps in the dressed shapes of blouse are determined by the adaptability of clothes made in arm movement.

THE PALATAL MORPHOLOGY OF THE CHILDREN WITH CLASS II DIV.1 MALOCCLUSION IN MIXED DENTITION : A STUDY USING THREE-DIMENSIONAL LASER SCANNER (혼합치열기 II급 1류 부정교합 어린이의 구개형태 : 3차원 레이저 스캐너를 이용한 연구)

  • Yang, Jung-Hyun;Lee, Sang-Hoon;Hahn, Se-Hyun;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.270-277
    • /
    • 2005
  • The purpose of this study was to clarify the palatal volume and anterior palatal slope of the children with class II div.1 malocclusion and normal occlusion in mixed dentition(Hellman dental age III A) using three-dimensional laser scanner. Samples were consisted of 31 children with skeletal class II div.1 malocclusion in mixed dentition and 29 children with normal occlusion and profile among the contestants in 2000-2004 Healthy Dentition Contest in Seoul. Totally 60 maxillary study model were taken. Each cast was scanned by three-dimensional laser scanner (Breuckmann opto-TOP HE, INUS, Korea) and shaped into the three-dimension image by Rapidform 2004 program(INUS, Korea). And the palatal volume and anterior palatal slope of each cast were calculated by Rapidform 2004 program(INUS, Korea). The values were statistically compared and evaluated by independent samples t-test with 95% of significance level. The results were as follows: 1. Palatal volume was significantly lesser in children with class II div.1 malocclusion than that of normal occlusion in mixed dentition(p<0.05). 2. No significant difference in the anterior palatal slope and palatal height was found between the children with class II div.1 malocclusion and normal occlusion in mixed dentition(p>0.05). 3. Palatal length was significantly greater in children with class II div.1 malocclusion than that of normal occlusion in mixed dentition(p<0.01). 4. Intercanine and intermolar width were significantly lesser in children with class II div.1 malocclusion than those of normal occlusion in mixed dentition(respectively p<0.05 and p<0.01).

  • PDF

Measurement of 3D Spreader Position Information using the CCD Cameras and a Laser Distance Measuring Unit

  • Lee, Jung-Jae;Nam, Gi-Gun;Lee, Bong-Ki;Lee, Jang-Myung
    • Journal of Navigation and Port Research
    • /
    • v.28 no.4
    • /
    • pp.323-331
    • /
    • 2004
  • This paper introduces a novel approach that can provide the three dimensional information about the movement of a spreader by using two CCD cameras and a laser distance measuring unit in order to derive ALS (Automatic Landing System) in the crane used at a harbor. So far a kind of 2D Laser scanner sensor or laser distance measuring units are used as comer detectors for the geometrical matching between the spreader and a container. Such systems provide only two dimensional information which is not enough for an accurate and fast ALS. In addition to this deficiency in performance, the price of the system is too high to adapt to the ALS. Therefore, to overcome these defects, we proposed a novel method to acquire the three dimensional spreader information using two CCD cameras and a laser distance measuring unit. To show the efficiency of proposed method, real experiments are performed to show the improvement of accuracy in distance measurement by fusing the sensory information of the CCD cameras and a laser distance measuring unit.

A study on the core technologies for industrial type digital 3D SFF system

  • Kim, Dong-Soo;An, Young-Jin;Kim, Sung-Jon;Choi, Byung-Oh;Lim, Hyun-Eui
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2170-2174
    • /
    • 2005
  • Selective Laser Sintering (SLS) is a useful rapid prototyping technique for the manufacture of three dimensional (3D) solid objects directly from a scanning data. A new approach called a Selective Multi-Laser Sintering (SMLS) system has been developed at Korea Institute Machinery & Materials (KIMM) as an industrial type SFFS. This SMLS machine is built with a frame, heaters, nitrogen supply part, laser system. This system uses the dual laser and 3D scanner made in $Solutionix^{TM}$ to improve the precision and speed for large objects. The three-dimensional solid objects are made of polyamide powder. The investigation on each part of SMLS system is performed to determine the proper theirs design and the effect of experimental parameters on making the 3D objects. The temperature of the system has a great influence on sintering the polymer. Because the stability of the powder temperature prevents the deformation of each layer, the controls of the temperature in both the system and the powders are very important during the process. Therefore, we simulated the temperature distribution of build room using the temperature analysis with ANSYS program. Selected radiant heater is used to raise temperature of powder to melting point temperature. The laser parameters such as scan spacing, scan speed, laser power and laser delay time affect the production the 3D objects too. The combination of the slow scan speed and the high laser power shows the good results without the layer curling. The work is under way to evaluate the effect of experimental parameters on process and to produce the various objects. We are going to experiment continuously to improve the size accuracy and surface roughness.

  • PDF

Digital evaluation of axial displacement by implant-abutment connection type: An in vitro study

  • Kim, Sung-Jun;Son, KeunBaDa;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.388-394
    • /
    • 2018
  • PURPOSE. To measure axial displacement of different implant-abutment connection types and materials during screw tightening at the recommended torque by using a contact scanner for two-dimensional (2D) and three-dimensional (3D) analyses. MATERIALS AND METHODS. Twenty models of missing mandibular left second premolars were 3D-printed and implant fixtures were placed at the same position by using a surgical guide. External and internal fixtures were used. Three implant-abutment internal connection (INT) types and one implant-abutment external connection (EXT) type were prepared. Two of the INT types used titanium abutment and zirconia abutment; the other INT type was a customized abutment, fabricated by using a computer-controlled milling machine. The EXT type used titanium abutment. Screws were tightened at $10N{\cdot}cm$, simulating hand tightening, and then at the manufacturers' recommended torque ($30N{\cdot}cm$) 10 min later. Abutments and adjacent teeth were subsequently scanned with a contact scanner for 2D and 3D analyses using a 3D inspection software. RESULTS. Significant differences were observed in axial displacement according to the type of implant-abutment connection (P<.001). Vertical displacement of abutments was greater than overall displacement, and significant differences in vertical and overall displacement were observed among the four connection types (P<.05). CONCLUSION. Displacement according to connection type and material should be considered in choosing an implant abutment. When adjusting a prosthesis, tightening the screw at the manufacturers' recommended torque is advisable, rather than the level of hand tightening.