• Title/Summary/Keyword: three dimensional measurement

Search Result 1,022, Processing Time 0.025 seconds

Mechanism of steel pipe reinforcement grouting based on tunnel field measurement results (터널 현장 계측결과를 통한 강관보강 그라우팅의 거동 메커니즘)

  • Shin, Hyunkang;Jung, Hyuksang;Lee, Yong-joo;Kim, Nag-young;Ko, Sungil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.133-149
    • /
    • 2021
  • This study aims to report the behavioral mechanism of steel pipe reinforcement grouting, which is being actively used to ensure the stability of the excavation surface during tunnel excavation, based on measurements taken at the actual site. After using a 12 m steel pipe attached with a shape displacement meter and a strain gauge to reinforce the actual tunnel surface, behavioral characteristics were identified by analyzing the measured deformation and stress of the steel pipe. Taking into account that the steel pipes were overlapped every 6 m, the measured data up to 7 m of excavation were used. In addition, the behavioral characteristics of the steel pipe reinforcement according to the difference in strength were also examined by applying steel pipes with different allowable stresses (SGT275 and SGT550). As a result of analyzing the behavior of steel pipes for 7 hours after the first excavation for 1 m and before proceeding with the next excavation, the stress redistribution due to the arching effect caused by the excavation relaxation load was observed. As excavation proceeded by 1 m, the excavated section exhibited the greatest deformation during excavation of 4 to 6 m due to the stress distribution of the three-dimensional relaxation load, and deformation and stress were generated in the steel pipe installed in the ground ahead of the tunnel face. As a result of comparing the behavior of SGT275 steel pipe (yield strength 275 MPa) and SGT550 steel pipe (yield strength 550 MPa), the difference in the amount of deformation was up to 18 times and the stress was up to 12 times; the stronger the steel pipe, the better it was at responding to the relaxation load. In this study, the behavior mechanism of steel pipe reinforcement grouting in response to the arching effect due to the relaxation load was identified based on the measured data during the actual tunnel excavation, and the results were reported.

The Study of Shielding Effect on Ovoids of Three Different Gynecological Applicator Sets in microSelectron-HDR System (microSelectron-HDR System에서 부인암 강내조사에 쓰이는 세 가지 Applicator Set들의 Ovoids에 대한 차폐효과 연구)

  • Cho, Young-K.;Park, Sung-Y.;Choi, Jin-H.;Kim, Hung-J.;Kim, Woo-C.;Loh, John-J.K.;Kim, Joo-Y.
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.259-266
    • /
    • 1998
  • There are three different types of gynecological applicator sets available in microSelectron-high dose-rate(HDR) System by Nucletron; standard applicator set(SAS), standard shielded applicator set(SSAS), and Fletcher-Williamson applicator set(FWAS). Shielding effect of a SAS without shielding material was compared with that of a SSAS with shielding material made of stainless steel(density ${\varrho}=8,000kg/m^3$) at the top and bottom of each ovoid, and of a FWAS with shielding material made of tungsten alloy(density ${\varrho}=14,000kg/m^3$ at the top and bottom of each ovoid. The shielding effects to the rectum and bladder of these two shielded applicator sets were to be measured at reference points with an ion chamber and specially designed supporting system for applicator ovoids inside of the computerized 3-dimensional water phantom. To determine the middle point of two ovoids the measurement was performed with the reference tip of ion chamber placed at the same level and at the middle point from the two ovoids, while scanning the dose with the ion chamber on each side of ovoids. The doses to the reference points of rectum were measured at 20(Rl), 25(R2), 30(R3), 40(R4), 50(R5), and 60(R6) mm located posteriorly on the vertical line drawn from M5(the middle dwell position of ovoid), and the doses to the bladder were measured at 20(Bl), 30(B2), 40(B3), 50(B4), and 60(B5) mm located anteriorly on the vertical line drawn from M5. The same technique was employed to measure the doses on each reference point of both SSAS and FWAS. The differences of measured rectal doses at 25 mm(R2) and 30 mm(R3) between SAS and SSAS were 8.0 % and 6.0 %: 25.0% and 23.0 % between SAS and FWAS. The differences of measured bladder doses at 20 mm(Bl) and 30 mm(B2) between SAS and SSAS were 8.0 % and 3.0 %: 23.0 % and 17.0 % between SAS and FWAS. The maximum shielding effects to the rectum and bladder of SSAS were 8.0 % and 8.0 %, whereas those of FWAS were 26.0 % and 23.0 %, respectively. These results led to the conclusion that FWAS has much better shielding effect than SSAS does, and when SSAS and FWAS were used for gynecological intracavitary brachytherapy in microSelectron-HDR system, the dose to the rectum and bladder was significantly reduced to optimize the treatment outcome and to lower the complication rates in the rectum and bladder.

  • PDF