• Title/Summary/Keyword: three dimensional elasticity theory

Search Result 82, Processing Time 0.022 seconds

Using three-dimensional theory of elasticity for vibration analysis of laminated sectorial plates

  • Liyuan Zhao;Man Wang;Rui Yang;Meng Zhao;Zenghao Song;N. Bohlooli
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.1-17
    • /
    • 2023
  • The main goal of this paper is to study vibration of damaged core laminated sectorial plates with Functionally graded (FG) face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular sector plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions.

On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.487-497
    • /
    • 2019
  • Rapid advances in the engineering applications can bring further areas to provide the opportunity to manipulate anisotropic structures for direct productivity in design of micro/nano-structures. For the first time, magnetic affected wave characteristics of nanosize plates made of anisotropic material is investigated via the three-dimensional bi-Helmholtz nonlocal strain gradient theory. Three small scale parameters are used to predict the size-dependent behavior of the nanoplates more accurately. After owing governing equations of wave motion, an analytical approach based harmonic series is utilized to fine the wave frequency as well as phase velocity. It is observed that the small scale parameters, magnetic field and wave number have considerable influence on the wave characteristics of anisotropic nanoplates. Due to the lack of any study on the mechanics of three-dimensional bi-Helmholtz gradient plates made of anisotropic materials, it is hoped that the present exact model may be used as a benchmark for future works of such nanostructures.

A new three-dimensional model for free vibration analysis of functionally graded nanoplates resting on an elastic foundation

  • Mahsa Najafi;Isa Ahmadi;Vladimir Sladek
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.273-291
    • /
    • 2024
  • This paper presents a three-dimensional displacement-based formulation to investigate the free vibration of functionally graded nanoplates resting on a Winkler-Pasternak foundation based on the nonlocal elasticity theory. The material properties of the FG nanoplate are considered to vary continuously through the thickness of the nanoplate according to the power-law distribution model. A general three-dimensional displacement field is considered for the plate, which takes into account the out-of-plane strains of the plate as well as the in-plane strains. Unlike the shear deformation theories, in the present formulation, no predetermined form for the distribution of displacements and transverse strains is considered. The equations of motion for functionally graded nanoplate are derived based on Hamilton's principle. The solution is obtained for simply-supported nanoplate, and the predicted results for natural frequencies are compared with the predictions of shear deformation theories which are available in the literature. The predictions of the present theory are discussed in detail to investigate the effects of power-law index, length-to-thickness ratio, mode numbers and the elastic foundation on the dynamic behavior of the functionally graded nanoplate. The present study presents a three-dimensional solution that is able to determine more accurate results in predicting of the natural frequencies of flexural and thickness modes of nanoplates. The effects of parameters that play a key role in the analysis and mechanical design of functionally graded nanoplates are investigated.

Three-Dimensional Free Vibration Analysis of Orthotropic Plates (직교이방성판의 3차원 자유진동 해석에 관한 연구)

  • Park, Sung-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • This paper presents the three-dimensional stress analysis of orthotropic thick plates using the three-dimensional spline strip method based on the theory of elasticity. The orthotropic plates are made of Aragonite crystal and sitka spruce. To demonstrate the convergence and accuracy of the present method, several examples are solved, and results are compared with those obtained by other exact and numerical methods based on the theory of elasticity. Good convergence and accuracy are obtained. The effects of thickness/width ratio, aspect ratio and boundary conditions on normal stress distributions of Aragonite crystal plates and sitka spruce plates are investigated. Moreover, the difference of weak orthotropic and strong orthotropic properties given to the characteristics of stress distributions are also shown.

충격하중을 받는 유한평판의 3차원 동탄성이론에 의한 응력해석

  • 양인영;김선규;박정수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.51-64
    • /
    • 1991
  • In this paper, an attempt is made to analyze the impulsive stress directly underneath the concentrated impact point for a supported square plate by using the three-dimensional dynamic theory of elasticity and the potential theory of displacement (stress function) on the supposition that the load, F$_{*}$0 sin .omega.t, acted on the central part of it. The results obtained from this study are as follows: 1. The impulsive stress cannot be analyzed directly underneath the acting point of concenrated impact load in privious theories, but can be analyzed by using the three-dimensional dynamic theory of elasticity and the potential theory of displacement. 2. Theorically, with increasing the pulse width of applied load, it was possible to clarify that the amount of stress in the point of concentrated impact load was increased and that of stress per unit impulse was decreased. 3. The numerical inversion of laplace transformation by the use of the F.F.T algorithm contributes the reduction of C.P.U time and the improvement of the accuracy or results. 4. In this paper recommended, it is found that the approximate equation of impact load function P (.tau.) = A.tau. exp (-B.tau.), and P (.tau.) =0.85A exp (-B.tau.) sinC.tau. could actually apply to all impact problem. In compared with the experimental results, the propriety of the analytical method is reasonable.

  • PDF

Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system

  • Zhou, Changlin;Zhao, Yi;Zhang, Ji;Fang, Yuan;Habibi, Mostafa
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.295-307
    • /
    • 2020
  • The vibrational characteristics of Multi-Phase Nanocomposite (MPC) reinforced annular/circular plate under initially stresses are presented using the state-space formulation based on three-dimensional elasticity theory (3D-elasticity theory) and Differential Quadrature Method (DQM). The MPC reinforced annular/circular plate is under initial lateral stress and composed of multilayers with Carbon Nanotubes (CNTs) uniformly dispersed in each layer, but its properties change layer-by-layer along the thickness direction. The State-Space based Differential Quadrature Method (SS-DQM) is presented to examine the frequency behavior of the current structure. Halpin-Tsai equations and fiber micromechanics are used in the hierarchy to predict the bulk material properties of the multi-scale composite. A singular point is investigated for modeling the circular plate. The CNTs are supposed to be randomly oriented and uniformly distributed through the matrix of epoxy resin. Afterward, a parametric study is done to present the effects of various types of sandwich circular/annular plates on frequency characteristics of the MPC reinforced annular/circular plate using 3D-elasticity theory.

Size dependent axial free and forced vibration of carbon nanotube via different rod models

  • Khosravi, Farshad;Simyari, Mahdi;Hosseini, Seyed A.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.157-172
    • /
    • 2020
  • The aim of this present research is the effect of the higher-order terms of the governing equation on the forced longitudinal vibration of a nanorod model and making comparisons of the results with classical nonlocal elasticity theory. For this purpose, the free axial vibration along with forced one under the two various linear and harmonic axial concentrated forces in zigzag Single-Walled Carbon Nanotube (SWCNT) are analyzed dynamically. Three various theories containing the classical theory, which is called Eringen's nonlocal elasticity, along with Rayleigh and Bishop theories (higher-order theories) are established to justify the nonlocal behavior of constitutive relations. The governing equation and the related boundary conditions are derived from Hamilton's principle. The assumed modes method is adopted to solve the equation of motion. For the free axial vibration, the natural frequencies are calculated for the various values of the nonlocal parameter only based on Eringen's theory. The effects of the nonlocal parameter, thickness, length, and ratio of the excitation frequency to the natural frequency over time in dimensional and non-dimensional axial displacements are investigated for the first time.

Small scale effect on the vibration of non-uniform nanoplates

  • Chakraverty, S.;Behera, Laxmi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.495-510
    • /
    • 2015
  • Free vibration of non-uniform embedded nanoplates based on classical (Kirchhoff's) plate theory in conjunction with nonlocal elasticity theory has been studied. The nanoplate is assumed to be rested on two-parameter Winkler-Pasternak elastic foundation. Non-uniform material properties of nanoplates have been considered by taking linear as well as quadratic variations of Young's modulus and density along the space coordinates. Detailed analysis has been reported for all possible casesof such variations. Trial functions denoting transverse deflection of the plate are expressed in simple algebraic polynomial forms. Application of the present method converts the problem into generalised eigen value problem. The study aims to investigate the effects of non-uniform parameter, elastic foundation, nonlocal parameter, boundary condition, aspect ratio and length of nanoplates on the frequency parameters. Three-dimensional mode shapes for some of the boundary conditions have also been illustrated. One may note that present method is easier to handle any sets of boundary conditions at the edges.

Finite Element Analysis and Evaluation of a Three-dimensional Plate Theory (삼차원 판이론의 유한요소해석)

  • 조한욱
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.147-160
    • /
    • 1995
  • Based on the weighted residual concept[4], a three-dimensional plate theory is derived using a Fourier series expansion of a dependent variable and a weighted residual approximation of the basic elasticity equations. The weighted residual equilibrium equations of the plate are expressed in terms of weighted displaced quantities, and the results are then interpreted by means of a potential energy functional. The potential energy expression is used to develop a finite element implementation. For illustrative purposes, the application of the theory to a strip plate is considered and two numerical examples of a cantilever and a simply-supported strip plate are studied.

  • PDF

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.