• 제목/요약/키워드: three dimensional effect

검색결과 2,338건 처리시간 0.03초

스케일 변화에 따른 NREL PHASE VI 풍력터빈의 성능해석 (PERFORMANCE ANALYSIS OF NREL PHASE VI WIND TURBINES UNDER VARIOUS SCALE CONDITIONS)

  • 박영민;장병희
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.155-158
    • /
    • 2006
  • In the present paper, the scale effects of two-dimensional airfoil and three-dimensional wind turbine were investigated by using FLUENT software. For two dimensional analysis, flow around S809 airfoil with various Reynolds No. and Mach No. conditions were simulated. For three dimensional analysis, scaled NREL Phase VI wind turbine models from 6% to 1,600% were simulated under the same tip speed ratio condition. Finally, aerodynamic comparisons between two-dimensional flow and three dimensional wind turbine flow are made for the feasibility study of scale effect corrections. Currently, KARI(Korea Aerospace Research Institute) is preparing for the wind tunnel test of 12% NREL Phase VI wind turbine and the performance analysis of the scaled NREL wind turbine model will be validated by the wind tunnel test.

  • PDF

The Effect of Three-Dimensional Morphology with Wet Chemical Etching in Solar Cells

  • Kim, Hyunyub;Park, Jangho;Kim, Hyunki;Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.667-667
    • /
    • 2013
  • Optimizing morphology of the front surface with three dimensional structures (3D) in solar cell is essential element for not only effectivelight harvesting but also carrier collection and separation without the cost burden in process. We designed a three-dimensionally ordered front surface with wet chemical etching. Wet chemical etching is a proper way to have three dimensional structures. The method efficiently transmits the incident light at the front surface to a Si absorber and has competitive price in manufacturing when comparing with reactive ion etching (RIE) to have three dimensional structures. This indicates that optimized front surface with three dimensional structures by wet chemical etching will bring effective light management in solar cells.

  • PDF

The Analysis of Three-dimensional Oxidation Process with Elasto-viscoplastic Model

  • Lee Jun-Ha;Lee Hoong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권6호
    • /
    • pp.215-218
    • /
    • 2004
  • This paper presents a three-dimensional numerical simulation for thermal oxidation process. A new elasto-viscoplastic model for robust numerical oxidation simulation is proposed. The three-dimensional effects of oxidation process such as mask lifting effect and corner effects are analyzed. In nano-scale process, the oxidant diffusion is punched through to the other side of the mask. The mask is lifted so the thickness of oxide region is greatly enhanced. The compressive pressure during the oxidation is largest in the mask corner of the island structure. This is because the masked area near the corner is surrounded by an area larger than the others in the island structure. This stress induces the retardation of the oxide growth, especially at the masked corner in the island structure.

주조공정의 수치해석을 위한 3차원 전산모델 개발에 관한 연구 (A Study on the Development of a Three Dimensional Numerical Model for the Casting Processes)

  • 목진호;;이진호
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1436-1444
    • /
    • 2002
  • A three dimensional numerical model was developed to analyze the mold filling and solidification processes straightforwardly in a casting processes. On the basis of the SIMPLER algorithm, the VOF method and the Equivalent Specific Heat method were adopted to deal with the free surface behavior and the latent heat evolution. The complete model has been validated using exact solutions and experimental results. The importance of three-dimensional effects has been highlighted by comparing the results from the three-dimensional analysis with those given by a two-dimensional analysis.

2차원 Side Plate FEM을 이용한 인공고관절 골흡수 연구 (A Study on the Bone Resorption of Artificial Hip Replacement by Two-Dimensional FEM)

  • 최형연;채수원;김성곤
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1994년도 추계학술대회
    • /
    • pp.75-78
    • /
    • 1994
  • Clinically, proximal bone resorption in the femur is frequently seen postoperatively on the follow up X-rays after total hip replacement(THR). We developed the finite element model of cementless THR. The model is two dimensional side plate model, whereby the three dimensional structural integrity of the bone can be accounted for by a separate two dimensional mesh, a side plate. The subject of this article is the development and application of this two dimensional side plate FEM to study the reverse effect of the various degree of bone resorption of femur after THR. The results of this study indicates that two dimensional side plate model is good and simple alternative to complex three dimensional model and the severity of the proximal bone resorption has the effect of more increasing stress on the cortex at the level of femoral stem tip.

  • PDF

인공고관절 골흡수로 인한 응력분포 변화의 2차원 유한요소 해석 (Two-Dimensional Finite Element Analysis of Bone Resorption from the Artificial Hip Replacement)

  • 최형연;채수원;김성곤
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권1호
    • /
    • pp.25-32
    • /
    • 1995
  • Clinically, proximal bone resorption in the femur is frequently seen postoperatively on the follow up XI-rays after total hip replacement (THR). We developed the finite element model of cementless THR. The model is two dimensional side plate model, whereby the three dimensional structural integrity of the bone can be accounted for by a separate two dimensional mesh, a side plate. The subject of this article is the development and application of this two dimensional side plate FEM to study the reverse effect of the various degree of bone resorption of femur after THR. The results of this study indicates that 1) two dimensional side plate model is good and simple alternative to complex three dimensional model and 2) the severity of the proximal bone resorption has the effect of more increasing stress on the cortex at the level of femoral stem tip.

  • PDF

Analysis of Two Dimensional and Three Dimensional Supersonic Turbulence Flow around Tandem Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Lee Kyung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1256-1265
    • /
    • 2006
  • The supersonic flows around tandem cavities were investigated by two-dimensional and three-dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes (RANS) equation with the k- ω turbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split with van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge- Kutta method. The aspect ratios of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two- dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the first cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

Experimental study on seepage characteristics of large size rock specimens under three-dimensional stress

  • Sun, Wenbin;Xue, Yanchao;Yin, Liming;Zhang, Junming
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.567-574
    • /
    • 2019
  • In order to study the effect of stress and water pressure on the permeability of fractured rock mass under three-dimensional stress conditions, a single fracture triaxial stress-seepage coupling model was established; By using the stress-seepage coupling true triaxial test system, large-scale rock specimens were taken as the research object to carry out the coupling test of stress and seepage, the fitting formula of permeability coefficient was obtained. The influence of three-dimensional stress and water pressure on the permeability coefficient of fractured rock mass was discussed. The results show that the three-dimensional stress and water pressure have a significant effect on the fracture permeability coefficient, showing a negative exponential relationship. Under certain water pressure conditions, the permeability coefficient decreases with the increase of the three-dimensional stress, and the normal principal stress plays a dominant role in the permeability. Under certain stress conditions, the permeability coefficient increases when the water pressure increases. Further analysis shows that when the gob floor rock mass is changed from high stress to unloading state, the seepage characteristics of the cracked channels will be evidently strengthened.

Numerical Analysis of Three Dimensional Supersonic Flow around Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Kim Jong-Rok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.311-314
    • /
    • 2006
  • The supersonic flow around tandem cavities was investigated by three- dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes(RANS) equation with the $\kappa-\omega$ thrbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split using van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge-Kutta method. The aspect ratio of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two-dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the fire cavity flow cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

  • PDF

2차원 및 3차원 저레이놀즈수 유동 해석 비교 연구 (A COMPARATIVE STUDY OF TWO AND THREE DIMENSIONAL LOW REYNOLDS NUMBER FLOW)

  • 이재훈;정경진;이길태;강인모
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.3-7
    • /
    • 2009
  • In this study, two and three dimensional low Reynolds number flows are compared. For the two dimensional flow, an airfoil was considered and for the three dimensional low wing and full-body aircraft were considered. Because a flight condition of the aircraft is in a low Reynolds number flow, itl requires reflecting flow transition. In the two dimensional analysis, transition is predicted using en method. In the three dimensional flow, the effect of transition is included using k-w SST turbulence models.

  • PDF