• 제목/요약/키워드: three different solutions

검색결과 525건 처리시간 0.027초

Analytical solutions for sandwich plates considering permeation effect by 3-D elasticity theory

  • Huo, Ruili;Liu, Weiqing;Wu, Peng;Zhou, Ding
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.127-139
    • /
    • 2017
  • In this paper, an exact analytical solution for simply supported sandwich plate which considers the permeation effect of adhesives is presented. The permeation layer is described as functionally graded material (FGM), the elastic modulus of which is assumed to be graded along the thickness following the exponential law. Based on the exact three-dimensional (3-D) elasticity theory, the solution of stresses and displacements for each layer is derived. By means of the recursive matrix method, the solution can be efficiently obtained for plates with many layers. The present solution obtained can be used as a benchmark to access other simplified solutions. The comparison study indicates that the finite element (FE) solution is close to the present one when the FGM layer in the FE model is divided into a series of homogeneous layers. However, the present method is more efficient than the FE method, with which the mesh division and computation are time-consuming. Moreover, the solution based on Kirchhoff-Love plate theory is greatly different from the present solution for thick plates. The influence of the thickness of the permeation layer on the stress and displacement fields of the sandwich plate is discussed in detail. It is indicated that the permeation layer can effectively relieve the discontinuity stress at the interface.

Effect of material composition on bending and dynamic properties of FG plates using quasi 3D HSDT

  • Damani, Bakhti;Fekrar, Abdelkader;Selim, Mahmoud M.;Benrahou, Kouider Halim;Benachour, Abdelkader;Tounsi, Abdelouahed;Bedia, E.A. Adda;Hussain, Muzamal
    • Structural Engineering and Mechanics
    • /
    • 제78권4호
    • /
    • pp.439-453
    • /
    • 2021
  • In this work, quasi three-dimensional (quasi-3D) shear deformation theory is presented for bending and dynamic analysis of functionally graded (FG) plates. The effect of varying material properties and volume fraction of the constituent on dynamic and bending behavior of the FG plate is discussed. The benefit of this model over other contributions is that a number of variables is diminished. The developed model considers nonlinear displacements through the thickness and ensures the free boundary conditions at top and bottom faces of the plate without using any shear correction factors. The basic equations that account for the effects of transverse and normal shear stresses are derived from Hamilton's principle. The analytical solutions are determined via the Navier procedure. The accuracy of the proposed formulation is proved by comparisons with the different 2D, 3D and quasi-3D solutions found in the literature.

Evolution of post-peak localized strain field of steel under quasi-static uniaxial tension: Analytical study

  • Altai, Saif L.;Orton, Sarah L.;Chen, Zhen
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.435-449
    • /
    • 2022
  • Constitutive modeling that could reasonably predict and effectively evaluate the post-peak structural behavior while eliminating the mesh-dependency in numerical simulation remains to be developed for general engineering applications. Based on the previous work, a simple one-dimensional modeling procedure is proposed to predict and evaluate the post-peak response, as characterized by the evolution of localized strain field, of a steel member to monotonically uniaxial tension. The proposed model extends the classic one-dimensional softening with localization model as introduced by (Schreyer and Chen 1986) to account for the localization length, and bifurcation and rupture points. The new findings of this research are as follows. Two types of strain-softening functions (bilinear and nonlinear) are proposed for comparison. The new failure criterion corresponding to the constitutive modeling is formulated based on the engineering strain inside the localization zone at rupture. Furthermore, a new mathematical expression is developed, based on the strain rate inside and outside the localization zone, to describe the displacement field at which bifurcation occurs. The model solutions are compared with the experimental data on four low-carbon cylindrical steel bars of different lengths. For engineering applications, the model solutions are also compared to the experimental data of a cylindrical steel bar system (three steel bars arranged in series). It is shown that the bilinear and nonlinear softening models can predict the energy dissipation in the post-peak regime with an average difference of only 4%.

Characterizations of Precipitated Zinc Powder Produced by Selective Leaching Method

  • Marwa F. Abd;F. F. Sayyid;Sami I. Jafar Al-rubaiey
    • Corrosion Science and Technology
    • /
    • 제23권1호
    • /
    • pp.54-63
    • /
    • 2024
  • This work investigated the influence of concentration and applied potential on the characteristics of zinc powder (purity, apparent density, morphology, particle size distribution, and particle zeta potential) produced by the electrochemical process from waste brass. High-purity zinc powder is obtained using selective leaching of industrial brass waste in acidic, neutral, and alkaline solutions. The free immersion method with and without voltage using linear polarization technique is used. In the electrochemical process, hydrochloric acid HCl in three different concentrations (0.1, 0.2, and 0.3) M is used. The time and the distance between the electrodes are set to be 30 min and 3 cm, respectively. It has been found that the percentage purity is 98%, 96%, and 94% for the acidic, neutral, and alkaline solutions, respectively. In addition, the morphology of zinc powder analyzed by SEM was dendritic and mossy. It has been recorded that the purity of zinc increases with the increase of the concentration and applied potential. The highest value of purity for zinc powder was %98.58 in 1000 mV and 0.3M concentration for graphite cathode.

A discussion on simple third-order theories and elasticity approaches for flexure of laminated plates

  • Singh, Gajbir;Rao, G. Venkateswara;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • 제3권2호
    • /
    • pp.121-133
    • /
    • 1995
  • It is well known that two-dimensional simplified third-order theories satisfy the layer interface continuity of transverse shear strains, thus these theories violate the continuity of transverse shear stresses when two consecutive layers differ either in fibre orientation or material. The third-order theories considered herein involve four/or five dependent unknowns in the displacement field and satisfy the condition of vanishing of transverse shear stresses at the bounding planes of the plate. The objective of this investigation is to examine (i) the flexural response prediction accuracy of these third-order theories compared to exact elasticity solution (ii) the effect of layer interface continuity conditions on the flexural response. To investigate the effect of layer interface continuity conditions, three-dimensional elasticity solutions are developed by enforcing the continuity of different combinations of transverse stresses and/or strains at the layer interfaces. Three dimensional twenty node solid finite element (having three translational displacements as degrees of freedom) without the imposition of any of the conditions on the transverse stresses and strains is also employed for the flexural analysis of the laminated plates for the purposes of comparison with the above theories. These shear deformation theories and elasticity approaches in terms of accuracy, adequacy and applicability are examined through extensive numerical examples.

Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions

  • Belkacem, Adim;Tahar, Hassaine Daouadji;Abderrezak, Rabahi;Amine, Benhenni Mohamed;Mohamed, Zidour;Boussad, Abbes
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.761-769
    • /
    • 2018
  • In this paper, we study the Carbon/Glass hybrid laminated composite plates, where the buckling behavior is examined using an accurate and simple refined higher order shear deformation theory. This theory takes account the shear effect, where shear deformation and shear stresses will be considered in determination of critical buckling load under different boundary conditions. The most interesting feature of this new kind of hybrid laminated composite plates is that the possibility of varying components percentages, which allows us for a variety of plates with different materials combinations in order to overcome the most difficult obstacles faced in traditional laminated composite plates like (cost and strength). Numerical results of the present study are compared with three-dimensional elasticity solutions and results of the first-order and the other higher-order theories issue from the literature. It can be concluded that the proposed theory is accurate and simple in solving the buckling behavior of hybrid laminated composite plates and allows to industrials the possibility to adjust the component of this new kind of plates in the most efficient way (reducing time and cost) according to their specific needs.

수종의 화학소독제에 침적시킨 고무인상체의 크기안정성에 관한 연구 (A STUDY ON DIMENSIONAL STABILITY OF THE RUBBER IMPRESSION MATERIALS FOLLOWING IMMERSION WITH CHEMICAL DISINFECTANTS)

  • 김형식;김창회
    • 대한치과보철학회지
    • /
    • 제27권2호
    • /
    • pp.249-259
    • /
    • 1989
  • Dental impression materials often become contaminated with patients' saliva and blood which creates the potential for cross-infection. It was the purpose of this study to investigate the effects of disinfection of three different rubber impression materials with four different disinfecting solutions. Polysulfide, vinyl polysiloxane and polyether impression materials were mixed according to the manufacturer's directions and samples were formed on a stainless steel model. On removal from the standard model, impressions were immersed in a disinfectant (acid-potentiated glutaraldehyde, phenollic compound, chlorine compound, iodophor) at room tempera tures for ten minutes. After disinfection, the distance between reference points(linear dimension) was measured using the non-contact automatic cordinate measuring projector(MZ-1, Nikon). Through statistical analyses on the data from this study,. the following conclusions were obtained. 1. Polysulfide, vinyl polysiloxane impressions were disinfected without dimensional change.(p>0.05) 2. Polyether impressions which were immersed in acid-potentiated glutaraldehyde were statistically different from control group.(p<0.05) But the amount of shrinkage(0.04%) would not be clinically significant. 3. By immersion of polysulfide, vinyl polysiloxane, polyether impressions in Banicide, Biocide, Multicide plus, sodium hypochlorite for ten minutes, clinically accurate impressions were obtained without dimensional change.

  • PDF

Mesh size refining for a simulation of flow around a generic train model

  • Ishak, Izuan Amin;Alia, Mohamed Sukri Mat;Salim, Sheikh Ahmad Zaki Shaikh
    • Wind and Structures
    • /
    • 제24권3호
    • /
    • pp.223-247
    • /
    • 2017
  • By using numerical simulation, vast and detailed information and observation of the physics of flow over a train model can be obtained. However, the accuracy of the numerical results is questionable as it is affected by grid convergence error. This paper describes a systematic method of computational grid refinement for the Unsteady Reynolds Navier-Stokes (URANS) of flow around a generic model of trains using the OpenFOAM software. The sensitivity of the computed flow field on different mesh resolutions is investigated in this paper. This involves solutions on three different grid refinements, namely fine, medium, and coarse grids to investigate the effect of grid dependency. The level of grid independence is evaluated using a form of Richardson extrapolation and Grid Convergence Index (GCI). This is done by comparing the GCI results of various parameters between different levels of mesh resolutions. In this study, monotonic convergence criteria were achieved, indicating that the grid convergence error was progressively reduced. The fine grid resolution's GCI value was less than 1%. The results from a simulation of the finest grid resolution, which includes pressure coefficient, drag coefficient and flow visualization, are presented and compared to previous available data.

An innovative fraction laws with ring support: Active vibration control of rotating FG cylindrical shell

  • Mohamed A. Khadimallah;Abdelhakim Benslimane;Imene Harbaoui;Sofiene Helaili;Muzamal Hussain;Mohamed R. Ali;Zafer Iqbal;Abdelouahed Tounsi
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.237-245
    • /
    • 2023
  • Based on novel Galerkin's technique, the theoretical study gives a prediction to estimate the vibrations of FG rotating cylindrical shell. Terms of ring supports have been introduced by a polynomial function. Three different laws of volume fraction are utilized for the vibration of cylindrical shells. Variation frequencies with the locations of ring supports have been analyzed and these ring supports are placed round the circumferential direction. The base of this approach is an approximate estimation of eigenvalues of proper functions which are the results of solutions of vibrating equation. Each longitudinal wave number corresponds to a particular boundary condition. The results are given in tabular and graphical forms. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing length-to-radius ratio. There is a new form of frequencies is obtained for different positions of ring supports, which is bell shaped. Moreover, on increasing the rotating speed, the backward frequencies increase and forward frequencies decreases.

Evaluation and Comparison of the Solubility Models for Solute in Monosolvents

  • Min-jie Zhi;Wan-feng Chen;Yang-bo Xi
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.53-69
    • /
    • 2024
  • The solubility of Cloxacillin sodium in ethanol, 1-propanol, isopropanol, and acetone solutions was measured at different temperatures. The melting property was also tested by using a differential scanning calorimeter (DSC). Then, the solubility data were fitted using Apelblat equation and λh equation, respectively. The Wilson model and NRTL model were not utilized to correlate the test data, since Cloxacillin sodium will decompose directly after melting. For comparison purposes, the four empirical models, i.e., Apelblat equation, λh equation, Wilson model and NRTL Model, were evaluated by using 1155 solubility curves of 103 solutes tested under different monosolvents and temperatures. The comparison results indicate that the Apelblat equation is superior to the others. Furthermore, a new method (named the calculation method) for determining the Apelblat equation using only three data points was proposed to solve the problem that there may not be enough solute in the determination of solubility. The log-logistic distribution function was used to further capture the trend of the correlation and to make better quantitative comparison between predicted data and the experimental ones for the Apelblat equation determined by different methods (fitting method or calculation method). It is found that the proposed calculation method not only greatly reduces the number of test data points, but also has satisfactory prediction accuracy.