• Title/Summary/Keyword: three degrees-of-freedom

Search Result 313, Processing Time 0.029 seconds

Standardization Trend of 3DoF+ Video for Immersive Media (이머시브미디어를 3DoF+ 비디오 부호화 표준 동향)

  • Lee, G.S.;Jeong, J.Y.;Shin, H.C.;Seo, J.I.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.156-163
    • /
    • 2019
  • As a primitive immersive video technology, a three degrees of freedom (3DoF) $360^{\circ}$ video can currently render viewport images that are dependent on the rotational movements of the viewer. However, rendering a flat $360^{\circ}$ video, that is supporting head rotations only, may generate visual discomfort especially when objects close to the viewer are rendered. 3DoF+ enables head movements for a seated person adding horizontal, vertical, and depth translations. The 3DoF+ $360^{\circ}$ video is positioned between 3DoF and six degrees of freedom, which can realize the motion parallax with relatively simple virtual reality software in head-mounted displays. This article introduces the standardization trends for the 3DoF+ video in the MPEG-I visual group.

Development of a Bellows Finite Element for the Analysis of Piping System (배관시스템 해석을 위한 벨로우즈 유한요소의 개발)

  • 고병갑;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1439-1450
    • /
    • 1995
  • Bellows is a familiar component in piping systems as it provides a relatively simple means of absorbing thermal expansion and providing system flexibility. In routine piping flexibility analysis by finite element methods, bellows is usually considered to be straight pipe runs modified by an appropriate flexibility factor; maximum stresses are evaluated using a corresponding stress concentration factor. The aim of this study is to develop a bellows finite element, which similarly includes more complex shell type deformation patterns. This element also does not require flexibility or stress factors, but evaluates more detailed deformation and stress patterns. The proposed bellows element is a 3-D, 2-noded line element, with three degrees of freedom per node and no bending. It is formulated by including additional 'internal' degrees of freedom to account for the deformation of the bellows corrugation; specifically a quarter toroidal section of the bellows, loaded by axial force, is considered and the shell type deformation of this is include by way of an approximating trigonometric series. The stiffness of each half bellows section may be found by minimising the potential energy of the section for a chosen deformation shape function. An experiment on the flexibility is performed to verify the reliability for bellows finite element.

Degrees of Freedom of Y Channel with Single-Antenna Users: Transmission Scheme and Beamforming Optimization

  • Long, Wei;Gao, Hui;Lv, Tiejun;Yuen, Chau
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4305-4323
    • /
    • 2014
  • In this paper, we investigate the degrees of freedom (DOF) of the Y channel consisting of three single-antenna users and a two-antenna common access relay, where each user intends to exchange independent messages with the other two users with the assistance of the relay. We show that the DOF of this particular scenario is 1.5. In order to prove this result, we firstly derive a DOF upper bound based on cut-set bound by allowing cooperation among users, which shows that the total DOF is upper bounded by 1.5. Then we propose a novel transmission scheme based on asymmetric signal space alignment (ASSA) to demonstrate the achievability of the upper bound. Theoretical evaluation and numerical results confirm that the upper bound can be achieved by utilizing ASSA, which also proves the optimality of the ASSA-based scheme in terms of DOF. Combining the upper bound and achievability, we conclude that the exact DOF is 1.5. Moreover, we present a novel iterative joint beamforming optimization (I-JBO) algorithm to further improve the sum rate. Numerical simulations have been provided to demonstrate the convergence speed and performance advantage of the I-JBO algorithm.

Optimal Vibration Control of Rigid Plate Elastically Supported at the Edges (끝단이 탄성 지지된 강체판의 최적진동제어)

  • Lee, Seong-Ki;Yun, Shin-Il;Han, Sang-Bo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.828-833
    • /
    • 2003
  • Rigid plate elastically supported at the edges is modeled and the performance of the optimal vibration control under sinusoidal excitation is tested. The controller based on the linear quadratic regulator with output feedback is designed to control the multi-degree of freedom vibration. Relative weighting parameters are considered as design constraints to determine the limitation of maximum control force and state parameters. Control force calculated by proportional output feedback of the displacement and velocity is used to suppress the vibration induced by the sinusoidal external force. The active vibration control of vibrating plate by the LQR controller is examined through the numerical simulations that show the effectiveness of optimal control scheme on the three degrees of freedom structure.

  • PDF

A study on the maneuverbility of robot manipulators (로봇 매니플레이터의 기동성에 관한 연구)

  • 최진욱;황원걸;나승유
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.492-496
    • /
    • 1988
  • Usually the first three joint variables (major link) and the next three joint variables (minor link) are used to determine the position and the orientation, respectively, of 6 degrees-of-freedom robot manipulators. In this paper, the Jacobians of 20 major links and 6 minor links are calculated to find the positional maneuverability matrices and orientational maneuverability matrices. Then the kinematic characteristics of the major and minor links are examined. Also we gave the measures of maneuverability and the controllability of the links for the figure of merits of robot manipulator design.

  • PDF

A Performance Study of First-order Shear Deformable shell Element Based on Loop Subdivision Surface (루프서브디비전 곡면을 이용한 일차전단 변형 쉘요소의 성능에 관한 연구)

  • 김형길;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.261-268
    • /
    • 2003
  • A first order shear deformable Loop-subdivision triangular element which can handle transverse shear deformation of moderately thick shell is developed. The developed element is general since it includes the effect of transverse shear deformation and has standard six degrees of freedom per node.(three translations and three rotations) The quartic box-spline function is employed as interpolation basis function. Numerical examples for the benchmark problems are analyzed in order to assess the performance of the newly developed subdivision shell element. Both in the uniform and in the distorted mesh configurations.

  • PDF

Development and Evaluation of Stitching Algorithm With five Degrees of Freedom for Three-dimensional High-precision Texture of Large Surface (대면적/고정밀 3차원 표면형상의 5자유도 정합법 개발 및 평가)

  • Lee, Dong-Hyeok;Ahn, Jung-Hwa;Cho, Nham Gyoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.118-126
    • /
    • 2014
  • In this paper, a new method is proposed for the five-degree-of-freedom precision alignment and stitching of three-dimensional surface-profile data sets. The control parameters for correcting thealignment error are calculated from the surface profile data for overlapped areas among the adjacent measuring areas by using the "least squares method" and "maximum lag position of cross correlation function." To ensure the alignment and stitching reliability, the relationships betweenthe alignment uncertainty, overlapped area, and signal-to-noise level of the measured profile data are investigated. Based on the results of this uncertainty analysis, an appropriate size is proposed for the overlapped area according to the specimen's surface texture and noise level.

Use of equivalent spring method for free vibration analyses of a rectangular plate carrying multiple three-degree-of-freedom spring-mass systems

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.713-735
    • /
    • 2005
  • Due to the complexity of mathematical expressions, the literature concerning the free vibration analysis of plates carrying multiple three-degree-of-freedom (dof) spring-mass systems is rare. In this paper, the three degrees of freedom (dof's) for a spring-mass system refer to the translational motion of its lumped mass in the vertical ($\bar{z}$) direction and the two pitching motions of its lumped mass about the two horizontal ($\bar{x}$ and $\bar{y}$) axes. The basic concept of this paper is to replace each three-dof spring-mass system by a set of equivalent springs, so that the free vibration characteristics of a rectangular plate carrying any number of three-dof spring-mass systems can be obtained from those of the same plate supported by the same number of sets of equivalent springs. Since the three dof's of the lumped mass for each three-dof spring-mass system are eliminated to yield a set of equivalent springs, the total dof of the entire vibrating system is not affected by the total number of the spring-mass systems attached to the rectangular plate. However, this is not true in the conventional finite element method (FEM), where the total dof of the entire vibrating system increases three if one more three-dof spring-mass system is attached to the rectangular plate. Hence, the computer storage memory required by using the presented equivalent spring method (ESM) is less than that required by the conventional FEM, and the more the total number of the three-dof spring-mass systems attached to the plate, the more the advantage of the ESM. In addition, since manufacturing a spring with the specified stiffness is much easier than making a three-dof spring-mass system with the specified spring constants and mass magnitude, the presented theory of replacing a three-dof spring-mass system by a set of equivalent springs will be also significant from this viewpoint.

Simplified projective transform for reconstruction of cylindrical panorama (실린더 파노라마 영상의 재구성을 위한 단순화된 사영 변환)

  • Lee Kang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.169-175
    • /
    • 2006
  • In this paper we propose a method of reconstruction of cylindrical panorama using simplified projective transform from the panning image on the fixed camera. For the practical construction of cylindrical panorama we consider the rotation of the camera on the Y-axis only, even though considering the rotation components on all of the X,Y,Z axis on three-dimensional space for projective transform between general panoramas. The restriction mentioned above simplifies projective transform with existing 8 degrees of freedom into the one with 4 degrees of freedom. In the results, overall computation for projective transform can be decreased to the great extents in quantify, because the number of corresponding points required for inducing the transforming formula is gone down by half. Proposed algorithm from the simulation carried out in this paper shows similar performance and decreased computational quantity compared with existing algorithm. Also, it shows the construction of cylindrical panorama using simplified projective transform.

  • PDF

Sensitivity analysis for optimal design of piezoelectric structures (압전지능구조물의 최적설계를 위한 민감도 해석)

  • 김재환
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.267-273
    • /
    • 1998
  • This study aims at performing sensitivity analysis of piezoelectric smart structure for minimizing radiated noise from the structure, The structure consists of a flat plate on which disk shaped piezoelectric actuator is mounted, and finite element modeling is used for the structure. The finite element modeling uses a combination of three dimensional piezoelectric, flat shell and transition elements so thus it can take into account the coupling effects of the piezoelectric device precisely and it can also reduce the degrees of freedom of the finite element model. Electric potential on the piezoelectric actuator is taken as a design variable and total radiated power of the structure is chosen as an objective function. The objective function can be represented as Rayleigh's integral equation and is a function of normal displacements of the structure. For the convenience of computation, all degrees of freedom of the finite element equation is condensed out except the normal displacements of the structure. To perform the design sensitivity analysis, the derivative of the objective function with respect to the normal displacements is found, and the derivative of the norma displacements with respect to the design variable is calculated from the finite element equation by using so called the adjoint variable method. The analysis results are compared with those of the finite difference method, and shows a good agreement. This sensitivity analysis is faster and more accurate than the finite difference method. Once the sensitivity analysis program is used for gradient-based optimizations, one could achieve a better convergence rate than non-derivative methods for optimal design of piezoelectric smart structures.

  • PDF