• 제목/요약/키워드: third harmonic current

검색결과 55건 처리시간 0.021초

Surgical Correction of Canine Brachycephalic Syndrome Including Resection of Elongated Soft Palate and Everted Laryngeal Saccules Using Harmonic Scalpel: A Retrospective Study of 21 Cases

  • Shin, Jung-In;Kim, Minkyung;Kim, Jong-Hoon;Lee, Chaeyeong;Kim, Young-Hwan;You, Young-Sung;Lee, Dong-Bin;Lee, Jae-Hoon
    • 한국임상수의학회지
    • /
    • 제39권1호
    • /
    • pp.1-8
    • /
    • 2022
  • The current, retrospective study aimed to assess the short-term prognosis and postoperative complications associated with the surgical correction of elongated soft palate using harmonic scalpel and to compare the postoperative complications associated with the application of harmonic scalpel and traditional surgery using Metzenbaum scissors. Harmonic scalpel was used to perform staphylectomy in 21 dogs. A total of ten dogs underwent sacculectomy; six dogs with harmonic scalpel and four dogs using Metzenbaum scissors. Stenotic nares were corrected by wedge resection. Postoperative complications were recorded through monitoring and radiographic examinations. Telephone interviews were conducted on the first, third, and seventh day after discharge and continued until the resolution of postoperative complications. Postoperative edema at the surgical site was identified and mitigated within a day or two. Snoring and dyspnea improved dramatically in the group that underwent staphylectomy alone. Moreover, three dogs presented with postoperative gastrointestinal complications, especially retching. The symptoms persisted for seven days and ten days in two dogs that underwent sacculectomy with harmonic scalpel and for two days in one dog that underwent sacculectomy with Metzenbaum scissors. The clinical signs and symptoms of brachycephalic syndrome disappeared without recurrence. Harmonic scalpel provides a hemostatic effect during staphylectomy, is convenient, and does not cause postoperative complications. Conversely, the use of harmonic scalpel during sacculectomy necessitated a longer period for the resolution of complications without any significant hemostatic efficacy, compared to traditional surgery.

A Five-Phase Induction Motor Speed Control System Excluding Effects of 3rd Current Harmonics Component

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.294-303
    • /
    • 2011
  • In this paper an effective five-phase induction motor (IM) and its drive methods are proposed. Due to the additional degrees of freedom, the five-phase IM drive presents unique characteristics for enhancing the torque producing capability of the motor. Also the five-phase motor drives possess many other advantages when compared to traditional three-phase motor drives. Some of these advantages include, reducing the amplitude and increasing the frequency of the torque pulsation, reducing the amplitude of the current without increasing the voltage per phase and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated winding, the produced back electromotive force (EMF) is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus the third harmonic of the currents. For demonstrating the superior performance of the proposed five-phase IM, the motors are also analyzed on the synchronously rotating reference frame. To supply trapezoidal current waveform and to exclude the effect of the $3^{rd}$ harmonic current, a new control stratagem is proposed. The proposed control method is based on direct torque control (DTC) and rotor flux oriented control (RFOC) of the five-phase IM drives. It is able to reduce the acoustical noise, the torque, the flux, the current, and the speed pulsations during the steady state. The DTC transient merits are preserved, while a better quality steady-state performance is produced in the five phase motor drive for a wide speed range. Experimental results clearly demonstrated a more dynamic steady state performance with the proposed control system.

A Load Identification Method for ICPT System Utilizing Harmonics

  • Xia, Chen-Yang;Zhu, Wen-Ting;Ma, Nian;Jia, Ren-Hai;Yu, Qiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2178-2186
    • /
    • 2018
  • Online identification of load parameters is the premise of establishing a stable and highly-efficient ICPT (Inductive Coupled Power Transfer) system. However, compared with pure resistive load, precise identification of composite load, such as resistor-inductance load and resistance-capacitance load, is more difficult. This paper proposes a method for detecting the composite load parameters of ICPT system utilizing harmonics. In this system, the fundamental and harmonic wave channel are connected to the high frequency inverter jointly. The load parameter values can be obtained by setting the load equation based on the induced voltage of secondary-side network, the fundamental wave current, as well as the third harmonic current effective value received by the secondary-side current via Fourier decomposition. This method can achieve precise identification of all kinds of load types without interfering the normal energy transmission and it can not only increase the output power, but also obtain higher efficiency compared with the fundamental wave channel alone. The experimental results with the full-bridge LCCL-S type voltage-fed ICPT system have shown that this method is accurate and reliable.

A Study of the SPWM High-Frequency Harmonic Circulating Currents in Modular Inverters

  • Xu, Sheng;Ji, Zhendong
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2119-2128
    • /
    • 2016
  • Due to detection and control errors, some high-frequency harmonics with voltage-source characteristics cause circulating currents in modular inverters. Moreover, the circulating currents are usually affected by the output filters (OF) of each module due to their filter and resonance properties. The interaction among the circulating currents in the modules increase the power loss and reduce system stability and control precision. Therefore, this paper reports the results of a study on the SPWM high-frequency harmonics circulating currents for a double-module VSI. In the paper, an analysis of the circulating-current circuits is briefly described. Next, a mathematic model of the single-module output voltage based on the carrier frequency of SPWM is built. On this basis, through mathematic modeling of high-frequency harmonic circulating currents, the formation mechanism and distribution characteristics of circular currents and their influences are studied in detail. Finally, the influences of the OF on the circulating currents are studied by mainly taking an LC-type filter as an example. A theoretical analysis and experimental results demonstrate some important characteristics. First, the carrier phase shifting of the SPWM for each module is the major cause of the SPWM harmonic circulating currents, and the circulating currents are in an odd distribution around n-times the carrier frequency $n{\omega}_s$, where n = 1, 2, 3, ${\ldots}$. Second, the harmonic circular currents do not flow into the parallel system. Third, the OF can effectively suppress the non-circulating part of the high-frequency harmonic currents but is ineffective for the circulation part, and actually reduces system stability.

초고주파 가열장치에 사용하는 철공진 변압기의 해석적 설계 (Analytic Design of a Ferroresonant Transformer for Microwave Heating System)

  • 나정웅;김원수
    • 전기의세계
    • /
    • 제28권1호
    • /
    • pp.53-58
    • /
    • 1979
  • In the microwave heating system, a ferroresonant transformer is used to regulate the magnetron power fluctuation. For the simplification, nonlinear characteristics of the transformer and the magnetron are idealized to be piecewise linear. Dipped peak shape of the magnetron current is explained qualitatively by considering the fundamental and third harmonic frequency components in the circuit. Design equations providing the values of the leakage inductance, turn ratio of the transformer and the capacitance are derived analytically by cosnidering the fundamental frequency component only. The ferroresonant transformer is designed to obtain a required regulation and high input power factor from the derived design equations, and analytical calculations are compared with experimental measurements.

  • PDF

성능함수제어 알고리즘을 이용한 3상 4선식 하이브리드형 직렬능동전력필터 (Hybrid Series Active Power filter Based on Performance Function Theory for 3-Phase 4-wire System)

  • 김진선;신재화;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1096-1098
    • /
    • 2003
  • In this paper, the control algorithm and control methods for a combined system of shunt passive filter and series active filter in 3-phase 4-wire system are discussed. Moreover, the 3-phase 4-wire system is widely employed in distributing electric energy to several office building and manufacturing plants. In such systems, the third harmonic and odd multiples of $3^{rd}$($9^{th}$, $15^{th}$, etc.) are termed as triple and zero sequence components that do not cancel each other in the system neutral. As a result, the triple harmonics add together creating a primary source of excessive neutral current. Regarding this concern, this paper presents a new control scheme for a series hybrid active system. This series active power filter acts not only as a harmonic compensator but also as a harmonic isolator. Hence the required rating of the series active filter is much smaller than that of a conventional shunt active filter. However, the performance of the combined system is greatly influenced by the filtering algorithm employed in the active power filter. This paper proposes a series active power filter scheme based on performance function. Some experiments was executed and experimental results from a prototype active power filter confirm the suitability of the proposed approach.

  • PDF

5상 유도전동기의 속도응답특성 개선을 위한 직접토크제어 시스템 (A Direct Torque Control System for Improving Speed Response of Five-Phase Induction Motor)

  • 김민회;최성운
    • 조명전기설비학회논문지
    • /
    • 제26권1호
    • /
    • pp.66-74
    • /
    • 2012
  • This paper propose a improved direct torque control(DTC) system for improving operation of five-phase squirrel-cage induction motor(IM). A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings and the produced back-electromotive force(EMF) is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents, there is necessary to controlled 3rd harmonic current. Also a DTC method is advantageous when it is applied to the five-phase IM, because the five-phase inverter provides 32 space vectors in comparison to 8 space voltage vectors into the three-phase inverter drive system. For presenting the superior performance of the proposed DTC, experimental results of speed control are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[hp] IM.

PC 기반 전동기 고장 진단 시스템의 구현 (Implementation of PC based Motor Fault Diagnosis System)

  • 두승호;박진배;곽기석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.2195-2196
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server. Fourth one was device server. Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer. In main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF

PC 기반 전동기 고장 진단 시스템의 구현 (Implementation of PC based Motor Fault Diagnosis System)

  • 두승호;박진배;곽기석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.563-564
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server Fourth one was device solver. Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer. In main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this Property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF

PC 기반 전동기 고장 진단 시스템의 구현 (Implementation of PC based Motor Fault Diagnosis System)

  • 두승호;박진배;곽기석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1229-1230
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server. Fourth one was device server. Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer in main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF