• Title/Summary/Keyword: thiol-specific

Search Result 70, Processing Time 0.028 seconds

Functional analysis of Tyr7 residue in human glutathione S-transferase P1-1 (Human glutathione S-transferase 중 tyrosine 7 잔기의 기능 분석)

  • Kong, Kwang-Hoon;Park, Hee-Joong;Yoon, Suck-Young;Cho, Sung-Hee
    • Analytical Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.378-385
    • /
    • 1997
  • In order to clarify the functional role of Tyr7 in human glutathione S-transferase P1-1, we extensively investigated the effect of mutation of Tyr7 on the substrate specificity and inhibition characteristics. The mutational replacement of Tyr7 with phenylalanine lowered the specific activities with 1,2-dichloro-4-nitrobenzene and 1,2-epoxy-3-(p-nitrophenoxy) propane for GSH-conjugation reaction to 3~5% of the values for the wild-type enzyme. The pKa of the thiol group of GSH bound in Y7F was about 2.4 pK units higher than that in the wild-type enzyme. The $I_{50}$ of hematin for Y7F was similar to that for the wild-type enzyme and those of benastatin A and S-(2,4-dinitrophenyl)glutathione were only moderately decreased. These results suggest that Tyr7 is considered to be important the catalytic activities not only for GSH-chloronitrobenzene derivatives but also for GSH-epoxide conjugation reaction, rather than to binding of the substrates.

  • PDF

Nitric Oxide as a Pro-apoptotic as well as Anti-apoptotic Modulator

  • Choi, Byung-Min;Pae, Hyun-Ock;Jang, Seon-Il;Kim, Young-Myeong;Chung, Hun-Taeg
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.116-126
    • /
    • 2002
  • Nitric oxide (NO), synthesized from L-arginine by NO synthases, is a small, lipophilic, diffusible, highly reactive molecule with dichotomous regulatory roles in many biological events under physiological and pathological conditions. NO can promote apoptosis (pro-apoptosis) in some cells, whereas it inhibits apoptosis (anti-apoptosis) in other cells. This complexity is a consequence of the rate of NO production and the interaction with biological molecules such as metal ion, thiol, protein tyrosine, and reactive oxygen species. Long-lasting overproduction of NO acts as a pro-apoptotic modulator, activating caspase family proteases through the release of mitochondrial cytochrome c into cytosol, up-regulation of the p53 expression, and alterations in the expression of apoptosis-associated proteins, including the Bcl-2 family. However, low or physiological concentrations of NO prevent cells from apoptosis that is induced by the trophic factor withdrawal, Fas, $TNF{\alpha}$/ActD, and LPS. The anti-apoptotic mechanism is understood on the basis of gene transcription of protective proteins. These include: heat shock protein, hemeoxygenase, or cyclooxygenase-2 and direct inhibition of the apoptotic executive effectors caspase family protease by S-nitrosylation of the cysteine thiol group in their catalytic site in a cell specific way. Our current understanding of the mechanisms by which NO exerts both pro- and anti-apototic action is discussed in this review article.

Molecular characterization and expression of cytosolic OASTL control cysteine metabolism in Mimosa pudica L.

  • Harun-Ur-Rashid, Md.;Masakazu, Fukuta;Hossain, Md. Amzad;Oku, Hirosuke;Iwasaki, Hironori;Oogai, Shigeki;Anai, Toyoaki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.224-224
    • /
    • 2017
  • In plants, cysteine(Cys) is decisive for protein and glutathione that acts as an indispensable sulfur grantor for methionine and many other sulfur containing secondary products. Cys formation is involved in the consecutive two reactions using two enzymes-serine acetyl transferase (SAT) and O-acetylserine (thiol)lyase (OASTL) and appeared in plant cytosol, chloroplast and mitochondria. OASTL is able to produce mimosine with 3-hydroxy-4-pyridone (3H4P) in lieu of $H_2S$ for Cys. In this report, we describe the first time cloning, purification and characterization of cytosolic(cy)OASTL from M. pudica and its expression in Escherichia coli and try to find out the cross link between this OASTL and the mimosine formation and to elucidate the metabolic role of cy-OASTL in M. pudica. The purified recombinant protein was 34.7 KDa. The optimum reaction pH and temperature was 6.5 and $50^{\circ}C$, respectively. The Michaelis constant (Km) and the Vmax value of the enzyme was $252{\pm}25{\mu}M$ and $57{\pm}3{\mu}M\;cysteine\;min^{-1}\;{\mu}g\;protein^{-1}$ for sulfide and $159{\pm}21{\mu}M$ and $58{\pm}2.4{\mu}M\;cysteine\;min^{-1}\;{\mu}g\;protein^{-1}$ for OAS subsequently. After cleaving the His-tag, we tried to observe cy-OASTL to form mimosine with appropriate substrate but it was not successful. It may be concluded that cy-OASTL of the present study is only Cys specific, not mimosine.

  • PDF

Chemical Modification of Serratia marcescens Acetolactate Synthase with Cys, Trp, and Arg Modifying Reagents

  • Choi, Ho-Il;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.40-45
    • /
    • 1995
  • Acetolactate synthase purified from Serratia marcescens ATCC 25419 was rapidly inactivated by the thiol specific reagent p-chloromercuribenzoate (PCMB), the tryptophan specific reagent N-bromosuccinimide (NBS), and the arginine modifying reagent phenylglyoxal (PGO). Inactivation by PCMB was prevented by both ${\alpha}$-ketobutyrate and pyruvate, and the second order rate constant for the inactivation was $2480\;M^{-1}{\cdot}min^{-1}$. The reaction order with respect to PCMB was 0.94. The inactivation of the enzyme by NBS was also substantially reduced by both ${\alpha}$-ketobutyrate and pyruvate. The second order rate constant for inactivation by NBS was $15,000\;M^{-1}{\cdot}min^{-1}$, and the reaction order was 2.0. On the other hand, inactivation by PGO was partially prevented by ${\alpha}$-ketobutyrate, but not by pyruvate. The second order rate constant for the inactivation was $1480\;M^{-1}{\cdot}min^{-1}$ and the order of reaction with respect to PGO was 0.75. These results suggest that essential cysteine, tryptophan and arginine are located at or near the substrate binding site.

  • PDF

Bio-functionalized Gold Nanoparticles for Surface-Plasmon- Absorption-Based Protein Detection

  • Kim, Wan-Joong;Choi, Soo-Hee;Rho, Young-S.;Yoo, Dong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4171-4175
    • /
    • 2011
  • Bio-functionalized gold nanoparticles (AuNPs), which bio-specifically interact with biotin-(strept)avidin, were investigated in this study. AuNPs were functionalized with a synthetically-provided biotin-linked thiol (BLT), which was synthesized by amidation of the active ester of biotin with 2-mercaptoethylamine. The BLT-attached AuNP was bio-specific for streptavidin, making it potentially useful for biosensor applications. To test the bio-specific interactions, the colors, absorption spectra and TEM images were investigated for proteins such as streptavidin, cytochrome C, myoglobin and hemoglobin. The colors and absorption spectra changed when streptavidin was added to the BLT-attached AuNP solution. However, the color and spectra did not change when the other proteins were added to the same solution. These results show that the AuNPs provided a colloidal solution with excellent stability and highly selective absorption characteristics for streptavidin as a target molecule. Proteins were also screened in order to identify a general strategy for the use of optical biosensing proteins based on AuNPs. In addition, TEM images confirmed that streptavidin led the BLT-attached AuNPs to aggregate or precipitate.

Aptamer-Based Precipitation as an Alternative to the Conventional Immunoprecipitation for Purification of Target Proteins

  • Song, Seongeun;Cho, Yea Seul;Lee, Sung-Jae;Hah, Sang Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2665-2668
    • /
    • 2014
  • Aptamers are oligonucleotides or peptide molecules that are able to bind to their specific target molecules with high affinity via molecular recognition. In this study, we present development of aptamer-based precipitation assays (or simply aptamoprecipitation) for His-tagged proteins and thrombin to compare their purification efficiency with other conventional affinity precipitation methods. A crosslinking method was employed to immobilize thiol-functionalized aptamers onto the surface of polystyrene resins, enabling them to specifically bind to His-tag and to thrombin, respectively. The resulting aptamer-functionalized resins were successfully applied via a one-step experiment to purification of His-tagged proteins from complex E. coli and to thrombin extraction, exhibiting superior or at least comparable purification results to the conventional immobilized metal affinity precipitation or immunoprecipitation.

A Study on Gene Detection using Non-labeling DNA

  • Choi Yong-Sung;Lee Kyung-Sup;Kwon Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.960-965
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

Functional Amino Acid Residues of Recombinant Tobacco Acetolactate Synthase

  • Chong, Chom-Kyu;Chang, Soo-Ik;Choi, Jung-Do
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.258-263
    • /
    • 1998
  • Acetolactate synthase (ALS) is the common enzyme in the biosynthetic pathways leading to leucine, valine, and isoleucine. Tobacco ALS was expressed in E. coli and purified to homogeneity. The recombinant tobacco ALS was inactivated by thiol-specific reagents, N-ethylmaleimide (NEM) and 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB). Inactivation of the ALS by NEM followed pseudo-first order kinetics and was first order with respect to the modifier. The substrate pyruvate protected the enzyme against the inactivation by NEM and DTNB. Extrapolation to complete inactivation of the enzyme by DTNB showed modification of approximately 2 out of 4 total cysteinyl residues (or 2 cysteinyl and 1 cysteinyl residues), with approximately 1 residue protected by pyruvate. The tobacco ALS was also inactivated by the tryptophanspecific reagent, N-bromosuccinimide (NBS), and was similarly protected by pyruvate. The kinetics of the inactivation was first-order with respect to NBS. The present data suggest that cysteinyl and tryptophanyl residues play a key role in the catalytic function of the enzyme.

  • PDF

Purification and Characteristics of Protease Produced by Syncephalastrum racemosum PDA 132-2 from Korean Traditional Meju (메주 유래의 Syncephalastrum racemosum PDA 132-2가 생산하는 Protease의 정제 및 특성)

  • 유진영;임성일
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.5
    • /
    • pp.1010-1016
    • /
    • 1999
  • Protease related mold was isolated and selected as a starter culture for commercial production of meju. Isolated microorganism was identified as Syncephalastrum racemosum PDA 132 2. To obtain basic data about protease for production of soybean peptides and application of the strain in meju fermentation, we extrated and purified protease and charateristics of the enzyme were investigated. The optimum condition for the production of enzyme was pH 4.0, 30oC, 5 days. The protease was purified 19.7 folds by gel filtration and ion exchange chromatography and specific activity was 12.4unit/mg. The purified enzyme was 34kDa in size, thiol protease(100% inhibited by PCMB), and was acidic protease(stable between pH 2.0~5.0). Vmax of the enzyme was 2.14 g/min which was lower(1/50) than that of by Asp. wentti and B. subtilis.

  • PDF

Development of New DNA Chip and Genome Detection Using an Indicator-free Target DNA (비수식화 DNA를 이용한 유전자 검출 및 새로운 DNA칩의 개발)

  • Park, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo;Tomoji Kawai
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.365-370
    • /
    • 2003
  • This research aims to develop an indicator-free DNA chip using micro-fabrication technology. At first, we fabricated a DNA microarray by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then indicator-free target DNA was hybridized by an electrical force and measured electrochemically in potassium ferricyanide solution. Redox peak of cyclic-voltammogram showed a difference between target DNA and mismatched DNA in an anodic peak current. Therefore, it is able to detect various genes electrochemically after immobilization of various probe DNAs and hybridization of indicator-free DNA on the electrodes simultaneously It suggested that this DNA chip could recognize the sequence specific genes.