• Title/Summary/Keyword: thiol

Search Result 426, Processing Time 0.03 seconds

Synthesis of Nucleophilic Adducts of Thiols (VIII). Addition of L-Glutathione to ${\beta},\;{\beta}$-Diethoxycarbonylstyrene Derivatives (Thiol의 친핵성 첨가물의 합성 (VIII). ${\beta},\;{\beta}$-Diethoxycarbonylstyrene에 대한 L-Glutathione의 첨가)

  • Tae-Rin Kim;Sung-Yong Choi;Joon-Seob Shin
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.651-655
    • /
    • 1985
  • A series of S-(2,2-diethoxycarbonyl-1-phenylethyl)-L-glutathione derivatives (11a-e) were synthesized from the reaction of ${\beta},\;{\beta}$-diethoxycarbonylstyrene with L-glutathione in 9 : 1 aqueous methanol. Thus, S-(2,2-diethoxycarbonyl-1-phenylethyl)-L-glutathione (11a), S-2,2-diethoxycarbonyl-1-(3',4'-methylenedioxy)phenylethyl-L-glutathione (11b), S-2,2-diethoxycarbonyl-1-(3',4',5'-trimethoxy)phenylethyl-L-glutathione (11c), S-2,2-diethoxycarbonyl-1-(4'-hydroxy)phenylethyl-L-glutathione (11d), S-2,2-diethoxycarbonyl-1-(4'-methoxy)phenylethyl-L-glutathione (11e) were obtained in good yields. The structure of the adducts was characterized by analytical and spectral data. The effects of pH and solvents upon the yields were also briefly examined. In the range of pH from 4.0 to 8.0, the aqueous methanol were found to be the best solvent for the addition reaction and the antibacterial activities of the adducts to Gram(+) bacteria were found to be weak.

  • PDF

The Biochemical Characterization of D-Hydroxyisovalerate Dehydrogenase, a Key Enzyme in the Biosynthesis of Enniatins

  • Lee, Chan; Zocher, Rainer
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.493-499
    • /
    • 1996
  • The biochemical properties of purified D-hydruxyisovalerate dehydrogenase from Fusarium sambucinum was elucidated. D-Hydroxyisovalerate dehydrogenase produced solely D-hydroxyisovalerate from 2-ketoisovalerate. The isoelectric point of the purified enzyme was 7.0. The enzyme was highly specific with 2-ketoisovalerate ($K_{m}=0.188$ mM, $V_{max}=8.814$ mmol/min mg) and 2-keto-3-methyl-n-valerate ($K_{m}=0.4$ mM, $V_{max}=1.851$ mmol/min mg) for the reductive reaction. This was also seen by comparing D-hydroxyisovalerate ($K_{m}=1.667$ mM, $V_{max}=0.407$ mmol/min mg) and D-hydroxy-3-methyl-n-valerate ($K_{m}=6.7$ mM, $V_{max}=0.648$ mmol/min mg) for the oxidative reaction. Thiol blocking reagents, such as iodoacetamide, N-ethylmaleimide and p-chloromecuribenzoate inhibited about 80% of enzyme activity at 0.02 mM, 50 mM and 50 mM, respectively. The enzyme activity was also inhibited by the addition of 0.1 mM of various metal ions, such as $Fe^{2+}$ (67%), $Cu^{2+}$ (88%), $Zn^{2+}$ t (76%) and $Mg^{2+}$ (9%). The enzyme was stable over three months in 50 mM potassium phosphate buffer (pH 5~7) at $-80^{\circ}C$. However the purified enzyme lost 30% of its activity in the same buffer after 24 h at $4^{\circ}C$. The studies about thermal inactivation of D-hydroxyisovalerate dehydrogenase exhibit 209.2 kJ/M of activation enthalpy and 0.35 kJ/mol K of activation entropy.

  • PDF

Relationship Between Biological Activity and Structure of Alantolactone (Alantolactone의 구조와 생물학적 활성)

  • 권영명
    • Journal of Plant Biology
    • /
    • v.17 no.2
    • /
    • pp.69-83
    • /
    • 1974
  • To elucidate the relationship between chemical structure and biological activity of alantolactone, and also to investigate the relationship between the growth of cells and the respiration of Chlorella pyrenoidosa affected by alantolactone, alantolactone and isoalantolactone were isolated from Inula helenium L., and di-, and tetrahydroalantolactones were prepared by the hydrogenation. At a concentration of 5$\times$10-5M alantolactone, the growth rate of Chlorella was greatly reduced. The viability of cells was also reduced over 50% within 2 hr at a concentration of 2.5$\times$10-4M alantolactone. However, oxygen uptake was increased by 20% over 3 hr. And 14CO2 production from glucose-1-14C, glucose-6-14C and 14C-acetate-U.L. was also increased by alantolactone. Biological activityof alantolactone was significantly reduced by cysteine, reduced glutathione or cystine but not by tryptophan or histidine. It was detected by spectrophotometrically and by TLC that alantolactone was also reacted with thiols except cystine. The solution of alantolactone reached with thiol gave the UV absorption spectrum of $\alpha$-saturated ${\gamma}$-lactone, and most of SH groups were disappeared by the addition reaction. From the reaction mixture of alantolactone and cysteine, a lactone adduct was isolated and purified. Isoalantolactone had shown similar activity as alantolactone, however, it was appeared that di-, and tetrahydroalantolactones were not only inactive biologically but also in vitro. It was concluded that there was no correlationship between increased respiration rate and mortality of Chlorella. During the respiration TCA cycle was activated, however it was uncertain that the activation of EMP or HMP was also appeared. Alantolactone and isoalantolactone were biologically active compounds but others were inactive. The reactivity of $\alpha$-methylene ${\gamma}$-lactone moiety toward SH group was principally responsible for its biological activity in sesquiterpene lactones.

  • PDF

1,n-Alkanedithiol (n = 2, 4, 6, 8, 10) Self-Assembled Monolayers on Au(111): Electrochemical and Theoretical Approach

  • Qu, Deyu;Kim, Byung-Cheol;Lee, Chi-Woo J.;Uosaki, Kohei
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2549-2554
    • /
    • 2009
  • The structures of 1,n-alkanedithiol (n = 2, 4, 6, 8, 10) self-assembled monolayers (SAMs) on a Au(111) substrate were investigated by electrochemical measurements and theoretical calculations. The results of the experimental techniques indicated that the dithiols, except n = 2, showed an upright molecular structure in the SAMs, in which alkanedithiols were bound to the Au surface via only one thiol functionality and the other one faced up to the air. The results also suggested that the formed dithiol SAMs were densely packed and highly oriented. Except ethanedithiol, which was thought to form a bilayer, the reductive desorption peak potentials of 1,n-alkanedithiol (n = 4, 6, 8, 10) SAMs were more negative than those of the corresponding monothiol ones in 0.1 M KOH solutions. This illustrates that the dithiol SAMs had higher stability than the corresponding monothiol ones. The major part of the high stability may be attributed to the van der Waals interaction among the sulfur atoms on top of the dithiol SAMs. The molecular modeling calculation showed that the structures of dithiol SAMs were similar to those of the corresponding monothiol SAMs and that all the dithiol SAMs, except ethanedithiol, were more stable than the corresponding monothiol SAMs. The calculated energy differences between dithiol and monothiol SAMs decreased with the increment of alkyl-chain length.

Transferrin-Conjugated Liposome/IL-12 pDNA Complexes for Cancer Gene Therapy in Mice

  • Joo, Soo-Yeon;Kim, Jin-Seok;Park, Heon-Joo;Choi, Eun-Kyung
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.293-296
    • /
    • 2005
  • Transferrin ($T_{f}$) has been used as a targeting ligand for delivering liposome/interleukin-12 (IL-12) pDNA complexes to cancer cells mostly due to the greater number of transferrin receptors ($T_{f}R$) found on tumor cells than on normal cells. $T_{f}$ was conjugated to liposomes via the reaction of MPB-PE with thiol groups of $T_{f}$ introduced by a heterobifunctional cross-linking agent, N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP). Four days after C26 inoculation when the tumor volume reached ${\sim}100mm^{3}$, tumor-bearing Balb/c mice were injected intravenously with $T_{f}-liposome/IL-12 pDNA$complexes twice a week for 3 weeks. Significant suppression of tumor growth was achieved in the group treated with the $T_{f}-liposome/IL-12 pDNA$ complexes, with a dose of $10{\mu}g$ of IL-12 pDNA showing the highest suppression effect among the tested doses. Similar results were obtained when the therapy was initiated one day after tumor inoculation, although in this case $30{\mu}g$ IL-12 pDNA/$T_{f}-liposome$ complexes showed a significant suppression of tumor growth between 19 and 23 days after tumor inoculation. This result indicates that the transferrin receptor-targeted liposomal system is an efficient delivery agent of therapeutic genes, such as IL-12, in mice and that its potential clinical use warrants further research investigation.

Detection of deoxynivalenol using a MOSFET-based biosensor (MOSFET형 바이오 센서를 이용한 디옥시 니발레놀의 검출)

  • Lim, Byoung-Hyun;Kwon, In-Su;Lee, Hee-Ho;Choi, Young-Sam;Shin, Jang-Kyoo;Choi, Sung-Wook;Chun, Hyang-Sook
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.306-312
    • /
    • 2010
  • We have detected deoxynivalenol(DON) using a metal-oxide-semiconductor field-effect-transistor(MOSFET)-based biosensor. The MOSFET-based biosensor is fabricated by a standard complementary metal-oxide-semiconductor(CMOS) process, and the biosensor's electrical characteristics were investigated. The output of the sensor was stabilized by employing a reference electrode that applies a fixed bias to the gate. Au which has a chemical affinity for thiol was used as the gate metal to immobilize a self-assembled monolayer(SAM) made of 16-mercaptohexadecanoic acid(MHDA). The SAM was used to immobilize anti-deoxynivalenol antibody. The carboxyl group of the SAM was bound to the anti- deoxynivalenol antibody. Anti-deoxynivalenol antibody and deoxynivalenol were bound by an antigen-antibody reaction. In this study, it is confirmed that the MOSFET-based biosensor can detect deoxynivalenol at concentrations as low as 0.1 ${\mu}g$/ml. The measurements were performed in phosphate buffered saline(PBS; pH 7.4) solution. To verify the interaction among the SAM, antibody, and antigen, surface plasmon resonance(SPR) measurements were performed.

Effect of $\beta$-Mercaptoethanol and Cysteamine With Bovine Oviduct Epithelial Cells on Development and Intracellular Glutathione Concentrations of Bovine IVM/IVF Embryos ($\beta$-Mercaptoethanol과 Cysteamine 첨가와 소 난관상피세포 공동배양이 소 체외수정란의 체외발육과 세포내 Glutathione 농도 변화에 미치는 영향)

  • 박동헌;양부근;김준국;정희태;박춘근;김종복;김정익
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.269-276
    • /
    • 1997
  • The objective of this study was to investigate the effects of thiol compounds with bovine oviduct epithlial crlls(BOEC) co culture on development and intracellular glutathione(GSH) concentrations of bovine embryos derived from IVM /IVF oocytes. In experiment 1 and 2, embryos developed to 2~8 cell stage after in vitro fertilization were co-cultured with BOEC in CR$_1$aa with or without $\beta$-mercaptoethanol($\beta$-ME) and cysteamine. The percentage of embryos that developed to morulae and blastocysts in 0,10, 25 and 5O$\pi$M $\beta$-ME with BOEC was 48.1, 64.0, 72.9 and 75.9%, respectively. Twenty-five and 5O$\pi$M $\beta$-ME groups were significantly higher than in 0 and 1O$\pi$M $\beta$- -ME groups(P$\pi$M cysteamine with BOEC was 50.0, 53.2, 72.0 and 66.7%, respectively. Fifty $\pi$M cysteamine group was significantly higher than any other groups (P$_4$aa with 0 and 5O$\pi$M $\beta$-ME or cysteamine were 68.5, 77.8, 78.7 and 80.0pM, respectively. Fifty $\pi$M $\beta$-ME group was significantly higher than that of control(P<0.05), but cysteamine group was not. Cell numbers of blastocysts were not difference in all experimental groups. These experiments indicate that $\beta$-ME and cysteamine with BOEC co-culture can affect the development and intracellular GSH concentrations of bovine embryos produced by IVM /IVF docytes.

  • PDF

Non-volatile Molecular Memory using Nano-interfaced Organic Molecules in the Organic Field Effect Transistor

  • Lee, Hyo-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.31-32
    • /
    • 2010
  • In our previous reports [1-3], electron transport for the switching and memory devices using alkyl thiol-tethered Ru-terpyridine complex compounds with metal-insulator-metal crossbar structure has been presented. On the other hand, among organic memory devices, a memory based on the OFET is attractive because of its nondestructive readout and single transistor applications. Several attempts at nonvolatile organic memories involve electrets, which are chargeable dielectrics. However, these devices still do not sufficiently satisfy the criteria demanded in order to compete with other types of memory devices, and the electrets are generally limited to polymer materials. Until now, there is no report on nonvolatile organic electrets using nano-interfaced organic monomer layer as a dielectric material even though the use of organic monomer materials become important for the development of molecularly interfaced memory and logic elements. Furthermore, to increase a retention time for the nonvolatile organic memory device as well as to understand an intrinsic memory property, a molecular design of the organic materials is also getting important issue. In this presentation, we report on the OFET memory device built on a silicon wafer and based on films of pentacene and a SiO2 gate insulator that are separated by organic molecules which act as a gate dielectric. We proposed push-pull organic molecules (PPOM) containing triarylamine asan electron donating group (EDG), thiophene as a spacer, and malononitrile as an electron withdrawing group (EWG). The PPOM were designed to control charge transport by differences of the dihedral angles induced by a steric hindrance effect of side chainswithin the molecules. Therefore, we expect that these PPOM with potential energy barrier can save the charges which are transported to the nano-interface between the semiconductor and organic molecules used as the dielectrics. Finally, we also expect that the charges can be contributed to the memory capacity of the memory OFET device.[4]

  • PDF

Reducing Characteristics of Potassium Tri-sec-butylborohydride

  • Yoon, Nung-Min;Hwang, Young-Soo;Yang, Ho-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.382-388
    • /
    • 1989
  • The approximate rates and stoichiometry of the reaction of excess potassium tri-sec-butylborohydride ($K_s-Bu_3BH$) with selected organic compounds containing representative functional groups were determined under the standard conditions (0$^{\circ}C$, THF) in order to define the characteristics of the reagent for selective reductions. Primary alcohols evolve hydrogen in 1 h, but secondary and tertiary alcohols and amines are inert to this reagent. On the other hand, phenols and thiols evolve hydrogen rapidly. Aldehydes and ketones are reduced rapidly and quantitatively to the corresponding alcohols. Reduction of norcamphor gives 99.3% endo- and 0.7% exo-isomer of norboneols. The reagent rapidly reduces cinnamaldehyde to the cinamyl alcohol stage and shows no further uptake of hydride. p-Benzoquinone takes up one hydride rapidly with 0.32 equiv hydrogen evolution and anthraquinone is cleanly reduced to the 9,10-dihydoxyanthracene stage. Carboxylic acids liberate hydrogen rapidly and quantitatively, however further reduction does not occur. Anhydrides utilize 2 equiv of hydride and acyl chlorides are reduced to the corresponding alcohols rapidly. Lactones are reduced to the diol stage rapidly, whereas esters are reduced moderately (3-6 h). Terminal epoxides are rapidly reduced to the more substituted alcohols, but internal epoxides are reduced slowly. Primary and tertiary amides are inert to this reagent and nitriles are reduced very slowly. 1-Nitropropane evolves hydrogen rapidly without reduction and nitrobenzene is reduced to the azoxybenzene stage, whereas azobenzene and azoxybenzene are inert. Cyclohexanone oxime evolves hydrogen without reduction. Phenyl isocyanate utilizes 1 equiv of hydride to proceed to formanilide stage. Pyridine and quinoline are reduced slowly, however pyridine N-oxide takes up 1.5 equiv of hydride in 1 hr. Disulfides are rapidly reduced to the thiol stage, whereas sulfide, sulfoxide, sulfonic acid and sulfone are practically inert to this reagent. Primary alkyl bromide and iodide are reduced rapidly, but primary alkyl chloride, cyclohexyl bromide and cyclohexyl tosylate are reduced slowly.

chemopreventive Effects of 2-(Allylthio) pyrazine

  • Kim, Nak-Doo;Kim, Sang-Geon
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.99-107
    • /
    • 1999
  • A series of organosulfur compounds were synthesized with the aim of developing chemopreventive compounds active against hepatotoxicity and chemical carcinogesis. 2-(Allylthio) prazine (2-AP) was effective in inhibiting cytochrome P450 2E1-mediated catalytic activities and protein expression, and in inducing microsomal epoxide hydrolase and major glutathione S-transferases. 2-AP reduced the hepatotoxicity caused by toxicant sand elevated cellular GSH content. Development of skin tumors, pulmonary adenoma and aberrant crypt foci in colon by various chemical carcinogens was inhibited by 2-AP pretreatment. Anticarcinogenic effects of 2-AP at the stage of initiation of tumors were also observed in the aflatoxin B1 ($AFB_1$)-induced three-step medium-term hepatocarcinogenesis model. Reduction of $AFB_1$-DNA adduct by 2-AP appeared to result from the decreased formation of $AFB_1$-8,9-epoxide via suppression of cytochrome P450, while induction of GST 2-AP increases the excretion of glutathione-conjugated $AFB_1$ . 2-AP was a radioprotective agent effective against the lethal dose of total body irradiation and reduced radiation-induced injury in association with the elevation of detoxifying gene expression. 2-AP produces reactive oxygen species in vivo, which is not mediated with the thiol-dependent production of oxidants and that NF-KB activation is not involved in the induction of the detoxifying enzymes. the mechanism of chemoprotection by 2-AP may involve inhibition of the P450-mediated metabolic activation of chemical carcinogens and enhancement of electrophilic detoxification through induction of phase II detoxification enzymes which would facilitate the clearance of activated metabolites through conjugation reaction.

  • PDF