• 제목/요약/키워드: thioglycolic acid(TGA)

검색결과 5건 처리시간 0.016초

CdTe QDs 용액 안정성의 장시간 유지지속을 위한 TGA(thioglycolic acid)의 첨가효과 (Influence of Raito of TGA(thioglycolic acid) on CdTe QDs Solution Stability for a Period of Time)

  • 김종환;김태희;구동건;기경범;최원규;한경석;류봉기
    • 한국재료학회지
    • /
    • 제22권9호
    • /
    • pp.465-469
    • /
    • 2012
  • This paper focuses on the after synthesis of CdTe quantum dots(QDs) in aqueous solution. CdTe nanoparticles were prepared in aqueous solution using mercaptocarboxylic acid or thioglycolic acid(TGA) as stabilizing agents. QDs emit light smaller than the nano size. The contents of the mercaptocarboxylic acid, and a kind of raw material, were revealed for a period of time. We succeeded in synthesizing a very high quality QDs solution; we discussed how to make QDs better and to keep them stabilized. TGA is known as one of the best stabilizing agents. Many papers have mentioned that TGA is a good stabilizing agent. We dramatically confirmed the state of QDs after the experiments. The QDs solution can be influenced by several factors. Different content of TGA can influence the stability of the CdTe solution. Most papers deal with the synthesis of CdTe, so we decided to discuss the after synthesis process for the stability of the CdTe solution.

저비율의 안정제를 이용한 CdTe 나노선 합성 (The Synthesis of CdTe Nanowires Based on Stabilizers with Low Concentrations)

  • 김기섭;강정원
    • Korean Chemical Engineering Research
    • /
    • 제53권6호
    • /
    • pp.798-801
    • /
    • 2015
  • Cadmium telluride(CdTe) 나노입자의 자기조립으로 형성된 나노구조체는 독특한 특성 때문에 여러 분야에서 활발히 연구되고 있다. 나노구조체의 광학적, 물리적 특성은 물질 형태에 크게 의존하기 때문에 나노구조를 제어하는 기술은 나노과학 분야에서 가장 핵심적인 요체이다. 이번 실험에서 각 나노입자의 자기조립을 통해 나노선이 제조됨을 확인하였다. 안정제로 사용된 thioglycolic acid(TGA)와 Cd 이온의 비율을 기존의 2.4:1에서 1.3:1로 낮추어 CdTe 나노선을 합성 하였다. 자기조립을 통해 생성된 나노입자는 곧고 긴 형태였으며 다결정을 이루고 있었다. 이렇게 합성된 나노선은 투과전자현미경(TEM)과 주사전자현미경(SEM)으로 관찰하였으며, 작게는 500 nm에서 크게는 $10{\mu}m$ 이상의 곧고 긴 나노선이 합성된 것을 확인할 수 있었다.

One-Pot Synthesis of CdSe Quantum Dots Using Selenium Dioxide as a Selenium Source in Aqueous Solution

  • Wang, Yilin;Yang, Hong;Xia, Zhenyi;Tong, Zhangfa;Zhou, Liya
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2316-2318
    • /
    • 2011
  • A novel technology has been developed for the synthesis of thioglycolic acid (TGA)-capped CdSe quantum dots (QDs) in aqueous medium. The reaction was carried out in air atmosphere with one-pot by using $SeO_2$ to replace Se or $Na_2Se$. The technological parameters including refluxing time, pH values and molar ratios of selenium to cadmium had significant influence on the luminescence properties of CdSe QDs. Furthermore, the obtained QDs were characterized by fluorescent spectroscopy, X-ray powder diffraction (XRD) and transmission electron microscopy (TEM), respectively. The results demonstrated that the CdSe QDs were of zinc-blended crystal structure in a sphere-like shape.

A simple one Step Thermochemical Approach for Synthesis of ZnS:Mn Nanocrystals (NCs)

  • Molaei, Mehdi;Lotfiani, Ahmad;Karimimaskon, Fatemeh;Karimipour, Masoud;Khanzadeh, Mohammd
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권1호
    • /
    • pp.92-95
    • /
    • 2014
  • In this work we have synthesized ZnS:Mn nanocrystals (NCs) using a simple one step thermochemical method. $Zn(NO_3)_2$ and $Na_2S_2O_3$ were used as the precursors and $Mn(NO_3)_2$ was the source of impurity. Thioglycolic acid (TGA) was used as the capping agent and the catalyst of the reaction. The structure and optical property of the NCs were characterized by means of X- ray diffraction (XRD), HRTEM, UV-visible optical spectroscopy and photoluminescence (PL). X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses demonstrated cubic phase ZnS:Mn NCs with an average size around 3 nm. Synthesized NCs exhibited band gap of about 4 eV. Photoluminescence spectra showed a yellow-orange emission with a peak located at 585 nm, demonstrating the Mn incorporation inside the ZnS particles.

ZnSe 나노분말 합성에 미치는 환원제와 첨가제의 영향 (Influence of Reducing Agents and Additives on the Synthesis of ZnSe Nanoparticles)

  • 백금지;이다경;이민서;송하연;홍현선
    • 한국분말재료학회지
    • /
    • 제27권3호
    • /
    • pp.233-240
    • /
    • 2020
  • Nano-sized ZnSe particles are successfully synthesized in an aqueous solution at room temperature using sodium borohydride (NaBH4) and thioglycolic acid (TGA) as the reducing agent and stabilizer, respectively. The effects of the mass ratio of the reducing agent to Se, stabilizer concentration, and stirring time on the synthesis of the ZnSe nanoparticles are evaluated. The light absorption/emission properties of the synthesized nanoparticles are characterized using ultraviolet-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, and particle size analyzer (PSA) techniques. At least one mass ratio (NaBH4/Se) of the reducing agent should be added to produce ZnSe nanoparticles finer than 10 nm and to absorb UV-vis light shorter than the ZnSe bulk absorption wavelength of 460 nm. As the ratio of the reducing agent increases, the absorption wavelengths in the UV-vis curves are blue-shifted. Stirring in the atmosphere acts as a deterrent to the reduction reaction and formation of nanoparticles, but if not stirred in the atmosphere, the result is on par with synthesis in a nitrogen atmosphere. The stabilizer, TGA, has an impact on the Zn precursor synthesis. The fabricated nanoparticles exhibit excellent photo-absorption/discharge characteristics, suggesting that ZnSe nanoparticles can be alloyed without the need for organic solutions or high-temperature environments.