• Title/Summary/Keyword: thin-walled structures

Search Result 195, Processing Time 0.021 seconds

Experimental capacity of perforated cold-formed steel open sections under compression and bending

  • Orlando, Maurizio;Lavacchini, Giovanni;Ortolani, Barbara;Spinelli, Paolo
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.201-211
    • /
    • 2017
  • This study evaluates the reliability of present European codes in predicting the collapse load of columns made with perforated cold-formed steel (CFS) profiles under combined axial load and bending. To this aim, a series of experimental tests on slender open-section specimens have been performed at varying load eccentricity. Preliminarily, stub column tests have also been performed to calculate the effective section properties of the investigated profile. By comparison of experimental data with code-specified M-N strength domains, the authors demonstrate that present code formulations may underestimate the collapse load of thin-walled perforated open sections. The study is the first step of a wider experimental and numerical study aimed at better describing strength domains of perforated CFS open sections.

Finite Element Analysis of Induction Heating Process for Development of Rapid Mold Heating System (급속 금형가열 시스템 개발을 위한 고주파 유도가열 과정의 유한요소해석)

  • Hwang, J.J.;Kwon, O.K.;Yun, J.H.;Park, K.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.113-119
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat material by means of an electric current that is caused to flow through the material or its container by electromagnetic induction. It has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers a finite element analysis of the induction heating process which can rapidly raise mold temperature. To simulate the induction heating process, the electromagnetic field analysis and transient heat transfer analysis are required collectively. In this study, a coupled analysis connecting electromagnetic analysis with heat transfer simulation is carried out. The estimated temperature changes are compared with experimental measurements for various heating conditions.

Influence of Corner Rounding on Local Buckling Strength in Square Sectioned Steel Column (사각단면 강기둥 모서리 곡률의 국부좌굴 강도에 대한 영향 평가)

  • Han Keum Ho;Kim Ki Un;Kim Jong Heon;Kang Young Jong
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1096-1101
    • /
    • 2004
  • Generally, the buckling of thin-walled structures has studied for rectangular sections or circular sections. Rectangular sections have small stiffness and circular sections have large stiffness when they are compared with rectangular sections for local buckling. But both of them have similar stiffness to column buckling. Therefore in this paper, we are going to analyze the local buckling for the box section with rounded comer and compare with rectangular section. Also we confirm that the rounded comer section has larger local buckling strength than rectangular section.

  • PDF

Sensitivity Analysis and Optimal design for the Elasto-plastic buckling of Vehicle Structures (차체구조물의 탄소성좌굴에 관한 민감도해석과 최적설계)

  • Won, Chong-Jin;Lee, Jong-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.106-112
    • /
    • 1998
  • Experience and experiments show that in many cases the buckling limit is reached at a much smaller load level than is predicted by linear buckling analysis. In this paper, it is considered linear and nonlinear of plane vehicle structure and estimates design sensitivity of the cross sectional area that is composed plane vehicle structure and performs optimal design. It compares linear vehicle structure with nonlinear vehicle structure for optima design result that is selected constraint condition of buckling load.

  • PDF

Analysis of curved multicell box girder assemblages

  • Razaqpur, A. Ghani;Li, Hangang
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.33-49
    • /
    • 1997
  • A method of analysis is proposed for curved multicell box girder grillages. The method can be used to analyze box girder grillages comprising straight and/or curved segments. Each segment can be modelled by a number of beam elements. Each element has three nodes and the nodal degrees of freedom (DOF) consist of the six DOF for a conventional beam plus DOF to account for torsional warping, distortion, distortional warping, and shear lag. This element is an extension of a straight element that was developed earlier. For a more realistic analysis of the intersection regions of non-colinear box girder segments, the concept of a rigid connector is introduced, and the compatibility requirements between adjoining elements in those regions are discussed. The results of the analysis showed good agreement with the shell finite element results, but the proposed method of analysis needs a fraction of the time and effort compared to the shell finite element analysis.

Localized Induction-Heating Method by the Use of Selective Mold Material (재료의 선택적 사용에 의한 금형의 국부적 유도가열기법)

  • Park, Keun;Do, Bum-Suk;Park, Jung-Min;Lee, Sang-Ik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.168-171
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact procedure. Though the induction heating has an advantage in terms of its rapid-heating capacity on the mold surface, it still has a restriction on mold temperature control due to geometric restriction of an induction coil according to the mold shape. It has been recently applied to the injection molding of thin-walled parts or micro/nano structures. For localized induction heating, an injection mold composed of ferromagnetic material and paramagnetic material is used. The electromagnetic induction concentrates on the ferromagnetic material, from which we can selectively heat for the local mold elements. The present study proposed a localized induction heating method by means of selective use of mold material. The feasibility of the proposed heating method is investigated through the comparison of experimental observations according to the mold material.

  • PDF

On the Strength Analysis of the Stiffener with Asymmetric Cross Section (비대칭(非對稱) 단면(斷面) 보강재(補剛材)의 강도해석(强度解析))

  • S.J.,Yim;Y.S.,Yang;J.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 1980
  • In the conventional ship's structures, the stiffeners with asymmetric sections have been widely used, in spite of the disadvantage on the point of strength, compared to those with symmetric sections. So far, the stiffened plating was usually analyzed not considering the geometric unsymmetry characteristics of the section, including only the cross sectional area and moment of inertia. In this paper, the stiffened plating is devided into the strips having a thin-walled open cross section by using the concept of the effective width. The geometric characteristics of the sections are also included. The governing equations are derived, which can be applied to the arbitrary cross section beams, and the symmetric and the asymmetric section beams which have the same cross sectional areas are analyzed by using the finite element method. From that result, we obtain the allowable load of the two sections, and compared them.

  • PDF

On the evaluation of critical lateral buckling loads of prismatic steel beams

  • Aydin, R.;Gunaydin, A.;Kirac, N.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.603-621
    • /
    • 2015
  • In this study, theoretical models and design procedures of the behavior of thin-walled simply supported steel beams with an open cross section under a large torsional effect are presented. I-sections were chosen as the cross section types. Firstly, the widely used differential equations for the lateral buckling for the pure bending moment effect in a beam element were adopted for the various moment distributions along the span of the beam. This solution was obtained for both mono-symmetric and bisymmetric sections. The buckling loads were then obtained by using the energy method. When using the energy method to solve the problem, it is possible to locate the load not only on the shear center but also at several points of the section depth. Buckling loads were obtained for six different load types. Results obtained for different load and cross section types were checked with ABAQUS software and compared with several standard rules.

Experimental study on shear behavior of I-girder with concrete-filled tubular flange and corrugated web

  • Shao, Y.B.;Wang, Y.M.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1465-1486
    • /
    • 2016
  • Conventional plate I-girders are sensitive to local buckling of the web when they are subjected mainly to shear action because the slenderness of the web in out-of-plane direction is much bigger. The local buckling of the web can also cause the distorsion of the plate flange under compression as a thin-walled plate has very low torsional stiffness due to its open section. A new I-girder consisted of corrugated web, a concrete-filled rectangular tubular flange under compression and a plate flange under tension is presented to improve its resistance to local buckling of the web and distorsion of the flat plate flange under compression. Experimental tests on a conventional plate I-girder and a new presented I-girder are conducted to study the failure process and the failure mechanisms of the two specimens. Strain developments at some critical positions, load-lateral displacement curves, and load-deflection curves of the two specimens have all be measured and analyzed. Based on these results, the failure mechanisms of the two kinds of I-girders are discussed.

Modeling of supersonic nonlinear flutter of plates on a visco-elastic foundation

  • Khudayarov, Bakhtiyar Alimovich
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.257-272
    • /
    • 2019
  • Numerical study of the flutter of a plate on a viscoelastic foundation is carried out in the paper. Critical velocity of the flutter of a plate on an elastic and viscoelastic foundation is determined. The mathematical model for the investigation of viscoelastic plates is based on the Marguerre's theory applied to the study of the problems of strength, rigidity and stability of thin-walled structures such as aircraft wings. Aerodynamic pressure is determined in accordance with the A.A. Ilyushin's piston theory. Using the Bubnov - Galerkin method, the basic resolving systems of nonlinear integro-differential equations (IDE) are obtained. At wide ranges of geometric and physical parameters of viscoelastic plates, their influence on the flutter velocity has been studied in detail.