• Title/Summary/Keyword: thin-film type

Search Result 1,288, Processing Time 0.161 seconds

Electrical properties of the Al doped ZnO thin films fabricated by RF magnetron sputtering system with working pressure and oxygen contents (RF magnetron sputtering법으로 제조한 Al doped ZnO 박막의 산소함량과 압력변화에 따른 전기적 특성 변화)

  • Kim, Jong-Wook;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.77-81
    • /
    • 2010
  • The AZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering and effects of working pressure and oxygen contents on the electrical properties were investigated. XRD spectra showed a preferred orientation along the c-axis and a minimum FWHM for the 70mTorr. From the surface analysis (AFM), the number of crystal grain of AZO thin film increased as working pressure increased. The film deposited with 70mTorr of working pressure showed n-type semiconductor characteristic having suitable resistivity $-1.59{\times}10^{-2}{\Omega}cm$, carrier concentration $-10.1{\times}10^{19}cm^{-3}$, and mobility $-4.35cm^2V^{-1}s^{-1}$ while other films by 7 mTorr, 20 mTorr of working pressure closed to metallic films. The films including the oxygen represent stoichiometric composition similar to the oxide. The transmittance of the film was over 85% in the visible light range regardless of the changes in working pressure and oxygen contents.

Electrical breakdown free SWCNT thin film transistors on flexible polyimide substrate

  • Park, Jae-Hyeon;Ha, Jeong-Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.58-58
    • /
    • 2010
  • Carbon nanotubes (CNTs) have been extensively studied owing to its superior electrical properties, especially high electron mobility, which can be applied to various nano-electronic devices. However, synthesized CNTs have a mixture of metallic and semiconducting tubes so that their separation has been a tremendous obstacle to the practical application in electronic device structures. Among the different separation methods, electrical breakdown process to selectively burn out the metallic tubes has been quite successful though it needs additional process in the fabrication of device structures. Here, we report on the selective but not perfect growth of semiconducting nanotubes via use of diluted ferritin catalyst. SWCNTs were grown on ferritin catalyst, where the concentration of the ferritin solution was changed. In this way, we could fabricate the electrical breakdown free SWCNT thin film transistors on the flexible polyimide (PI) substrate. When we used the ferritin diluted by 1/2000, ~ 60 % of the SWCNT thin film transistors showed a perfect p-type behavior with an on/off current ratio higher than $10^5$ and on-current greater than $10^{-7}$ A. We will also discuss the photo-response of such formed thin film transistors over both visible and UV light.

  • PDF

TiO2 Thin Film Coating on an Nb-Si-Based Superalloy via Atomic Layer Deposition (원자층 증착법을 통한 Nb-Si계 초내열합금 분말 상의 TiO2 박막 증착 연구)

  • Ji Young Park;Su Min Eun;Jongmin Byun;Byung Joon Choi
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.255-262
    • /
    • 2024
  • Nano-oxide dispersion-strengthened (ODS) superalloys have attracted attention because of their outstanding mechanical reinforcement mechanism. Dispersed oxides increase the material's strength by preventing grain growth and recrystallization, as well as increasing creep resistance. In this research, atomic layer deposition (ALD) was applied to synthesize an ODS alloy. It is useful to coat conformal thin films even on complex matrix shapes, such as nanorods or powders. We coated an Nb-Si-based superalloy with TiO2 thin film by using rotary-reactor type thermal ALD. TiO2 was grown by controlling the deposition recipe, reactor temperature, N2 flow rate, and rotor speed. We could confirm the formation of uniform TiO2 film on the surface of the superalloy. This process was successfully applied to the synthesis of an ODS alloy, which could be a new field of ALD applications.

Thin Film Amorphous/Bulk Crystalline Silicon Tandem Solar Cells with Doped nc-Si:H Tunneling Junction Layers

  • Lee, Seon-Hwa;Lee, Jun-Sin;Jeong, Chae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.257.2-257.2
    • /
    • 2015
  • In this paper, we report on the 10.33% efficient thin film/bulk tandem solar cells with the top cell made of amorphous silicon thin film and p-type bulk crystalline silicon bottom cell. The tunneling junction layers were used the doped nanocrystalline Si layers. It has to allow an ohmic and low resistive connection. For player and n-layer, crystalline volume fraction is ~86%, ~88% and dark conductivity is $3.28{\times}10-2S/cm$, $3.03{\times}10-1S/cm$, respectively. Optimization of the tunneling junction results in fill factor of 66.16 % and open circuit voltage of 1.39 V. The open circuit voltage was closed to the sum of those of the sub-cells. This tandem structure could enable the effective development of a new concept of high-efficiency and low cost cells.

  • PDF

A Study on Friction and Wear of Manganese Phosphate Thin Film (인산망간 피막의 마찰 마모 특성에 관한 연구 ,)

  • 박영도;유상희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1384-1389
    • /
    • 2004
  • In these days, wear resistance is an essential condition because the relative movement between machine parts is being accelerated and those connected with the drive parts transmit power and force. Also wear resistance is closely related to reliability and life of products, therefore the study on friction and wear is very important in many fields. In this paper, wear test was conducted to know properties about friction and wear of manganese phosphate being used widely. Test type is 1 ball on disk and we compared manganese phosphate thin film with non-coated material. Through this study, we could know the effect of this surface treatment method, and then it is assumed that the reliability of parts will be secure.

  • PDF

A Study on the Thermally Stimulated Current of PVDF Thin Film Prepared by Physical Vapor Deposition Method (진공증착법으로 제조한 PVDF 박막의 열자격전류에 관한 연구)

  • Lee, S.W.;Park, S.H.;Kim, H.K.;Lim, E.C.;Kim, S.J.;Yuk, J.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.755-757
    • /
    • 1998
  • The thermally stimulated current (TSC) of PVDF thin film prepared by physical vapor deposition method was investigated. PVDF shows three TSC peaks designated $P_1$, $P_2$ and $P_3$ in ascending order of temperature. The $P_1$ peak is associated with water in the PVDF specimen. $P_2$ and $P_3$ Peaks are specific peaks of $\alpha$ and $\beta$ type PVDF, respectively. The peak temperature was shifted to higher temperature, and peak intensity was decreased with increasing substrate temperature under thin film preparation.

  • PDF

Fabrication of He-Ne ellipsometer and in-situ measurement of effective density variation of $TiO_2$thin films (보급형 He-Ne 타원해석기의 제작과 $TiO_2$ 박막 유효밀도 변화의 in-situ 측정)

  • 김상준;방현용;김상열
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.432-437
    • /
    • 1999
  • We have fabricated an in situ ellipsometer operating at He-Ne wavelength. It can be applied to the real-time, in-situ tracking of the ellisometric change which occurs during various sample treatments. As a rotating analyzer type, all optical elements and related parts are designed to share a common hollow-axis configuration, and hence the ellipsometer is compact in shape and simple in design. It is mountable on the spare ports of vacuum chamber with ease. Using this ellipsometer, we observed the effective density variation of previously grown $TiO_2$ thin films by using electron beam evaporation. The packing density of the as-grown film was 82%. When exposed to atomsphere, the micro-void of the film was filled with water vapor. This water-filled $TiO_2$ thin film was subject to heating/cooling cycles in vacuum and the ellipsometric variation versus temperature and cycling number was measured in real time using this in situ He-Ne ellipsometer.

  • PDF

Silicon thin film and p-n junction diode made by $CO_2$ laser-induced CVD method ($CO_2$ Laser-induced CVD법에 의한 Silicon박막 및 p-n 접합 Silicon제작)

  • Choi, H.K.;Jeong, K.;Kim, U.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.662-666
    • /
    • 1989
  • Pure mono Silane(Purity: 99.99%) was used as a thin film source and [$SiH_4$ + $H_2$ (5%)] + [$PH_3$ + $H_2$(0.05%)] mixed dilute gas was used for p-n junction diode. The substrate was P-type silicon wafer (p=$3{\Omega}$ cm) with the direction (100). The crystalline qualities of deposited thin film were investigated by the X-ray diffraction, RHEED and TED patterns and the voltampere characteristics of p-n junction diode was identified by I-V curve.

  • PDF

Characteristics of spiral type thin film inductors for the frequency (나선형 박막 인덕터의 주파수 특성)

  • Park, Dae-Jin;Min, Bok-Ki;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.890-893
    • /
    • 2004
  • In this study, Spiral inductors on the $SiO_2/Si$(100) substrate were fabricated by the magnetron sputtering method. Cu thin film with the thickness of 2 ${\mu}m$ was deposited on the substrate. Also we fabricated square inductors through the wet chemical etching technique. The inductors are completely specified by the turn width and the spacing between spirals. Both the width and spacing between spirals were varied from 10 to 60${\mu}m$ and from 20 to 70 ${\mu}m$, respectively. Inductance and Q factor dependent on the frequency were investigated to analyze performance of spiral inductors.

  • PDF

Effect of the Hydrophobicity of Hybrid Gate Dielectrics on a ZnO Thin Film Transistor

  • Choi, Woon-Seop;Kim, Se-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.257-260
    • /
    • 2010
  • Zinc oxide (ZnO) bottom-contact thin-film transistors (TFTs) were prepared by the use of injector type atomic layer deposition. Two hybrid gate oxide systems of different polarity polymers with silicon oxide were examined with the aim of improving the properties of the transistors. The mobility and threshold voltage of a ZnO TFT with a poly(4-dimethylsilyl styrene) (Si-PS)/silicon oxide hybrid gate dielectric had values of 0.41 $cm^2/Vs$ and 24.4 V, and for polyimide/silicon oxide these values were 0.41 $cm^2/Vs$ and 24.4 V, respectively. The good hysteresis property was obtained with the dielectric of hydrophobicity. The solid output saturation behavior of ZnO TFTs was demonstrated with a $10^6$ on-off ratio.