• Title/Summary/Keyword: thin-cathode

Search Result 254, Processing Time 0.032 seconds

Fabrication of Field Emitter Arrays by Transferring Filtered Carbon Nanotubes onto Conducting Substrates

  • Jang, Eun-Soo;Goak, Jung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.311-311
    • /
    • 2009
  • Carbon nanotubes (CNTs) belong to an ideal material for field emitters because of their superior electrical, mechanical, and chemical properties together with unique geometric features. Several applications of CNTs to field emitters have been demonstrated in electron emission devices such as field emission display (FED), backlight unit (BLU), X-ray source, etc. In this study, we fabricated a CNT cathode by using filtration processes. First, an aqueous CNT solution was prepared by ultrasonically dispersing purified single-walled CNTs (SWCNTs) in deionized water with sodium dodecyl sulfate (SDS). The aqueous CNT solution in a milliliter or even several tens of micro-litters was filtered by an alumina membrane through the vacuum filtration, and an ultra-thin CNT film was formed onto the alumina membrane. Thereafter, the alumina membrane was solvated by acetone, and the floating CNT film was easily transferred to indium-tin-oxide (ITO) glass substrate in an area defined as 1 cm with a film mask. The CNT film was subjected to an activation process with an adhesive roller, erecting the CNTs up to serve as electron emitters. In order to measure their luminance characteristics, an ITO-coated glass substrate having phosphor was employed as an anode plate. Our field emitter array (FEA) was fairly transparent unlike conventional FEAs, which enabled light to emit not only through the anode frontside but also through the cathode backside, where luminace on the cathode backside was higher than that on the anode frontside. Futhermore, we added a reflecting metal layer to cathode or anode side to enhance the luminance of light passing through the other side. In one case, the metal layer was formed onto the bottom face of the cathode substrate and reflected the light back so that light passed only through the anode substrate. In the other case, the reflecting layer coated on the anode substrate made all light go only through the cathode substrate. Among the two cases, the latter showed higher luminance than the former. This study will discuss the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the either side.

  • PDF

Dry etching of tin oxide thin films using an atmospheric pressure cold plasma (대기압 저온 플라스마에 의한 산화 주석 박막의 식각)

  • 이봉주;히데오미코이누마
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.4
    • /
    • pp.411-415
    • /
    • 2001
  • Using the plasma that we developed to generate a low-temperature plasma at atmospheric pressure, we have investigated the etching possibility of tin oxide $(SnO_2)$ thin films. Hydrogen and methane radicals generated from the plasma were observed and their intensity was found to be dependent on the cathode material by an analysis with optical emission spectroscopy as well as by the plasma impedance. The etching ability of this plasma was evaluated by an emission intensity as well as by the evaluation of impedance using a plasma I-V curve.

  • PDF

A Study on the Effects of the Optical Characteristics of backlight Sources on the Photo Leakage Currents of a-Si:H Thin Film Transistor (비정질 실리콘 TFT의 광누설 전류에 Backlight 광원의 광학적 특성이 미치는 영향에 대한 연구)

  • Im, S.H.;Kwon, S.J.;Cho, E.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.55-56
    • /
    • 2008
  • The photo leakage currents of a conventional hydrogenated amorphous silicon(a-Si:H) thin film transistor(TFT) were investigated and analyzed in the case of illumination from various lightsources such as halogen lamp, cold cathode fluorescent lamp(CCFL) backlight, and white light emitting diode(LED) backlight The photo leakage characteristics showed the apparent differences in the leakage level and in the $I_{on}/I_{off}$ ratio in spite of the similar luminances of light sources. This leakage level is expected to be related to the wavelength of the lowest intensity peak from spectral analysis of light sources.

  • PDF

알루미나 나노 다공성 박막공정용 전기화학 양극산화 장치의 제작

  • Choe, Jae-Ho;Baek, Ha-Bong;Kim, Geun-Ju
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.230-233
    • /
    • 2007
  • A system of anodic process of aluminum thin film has implemented for nanofabrication. The manufactured equipment consists of three main parts: chiller, reaction bath and power supply. The chiller module consists of refrigeration compressor, copper tube and coolant with a thermostat. The reaction bath has kept in same temperature as a thermodynamic canonical ensemble system during the anodic reaction process. The magnetic bar has stirred oxalic acid in bath for uniform reaction. The DC power supply has applied into two electrodes, aluminum for anode and platinum for cathode in the oxalic acid. The anodization process results in the formation of nanoporous thin films.

  • PDF

Electrical Properties of Mg:Ag/tris-(8-hydroxyquinoline) Aluminum Heterointerface in Organic Light-emitting Devices

  • Choo, D.C.;Im, H.C.;Lee, D.U.;Kim, T.W.;Han, J.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1429-1431
    • /
    • 2005
  • Organic molecular-beam deposition of Mg:Ag thin films with a low Mg concentration on tris (8-hydroxyquinolino) aluminum $(Alq_3)$ layers at room temperature was performed to investigate the feasibility of using Mg:Ag thin films as cathode electrodes in organic light-emitting devices (OLEDs). The effective barrier height of the $Mg:Ag/Alq_3$ heterointerface, determined from current-voltage measurements, was as low as 0.23 eV. These results help improve understanding the electrical properties of the $Mg:Ag/Alq_3$ heterointerfaces in OLEDs.

  • PDF

Blue-Emitting CaS:Pb Thin Film Electroluminescent Devices Fabricated by Controlled Atomic Layer Deposition

  • Yun, Sun-Jin;Kim, Yong-Shin;KoPark, Sang-Hee;Kang, Jung-Sook;Cho, Kyoung-Ik;Ma, Dong-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.149-150
    • /
    • 2000
  • Lead-doped calcium sulfide(CaS:Pb) thin film electroluminescent devices were deposited using atomic layer deposition(ALD). CaS:Pb is a very promising blue phosphor showing very high luminance and the color coordinate close to the blue of cathode ray tube. The luminance, $L_{25}$, of CaS:Pb(1.6 mol.%) EL device was higher than 80 $cd/cm^2$ at a driving frequency of 60Hz. The color coordinates of blue EL emission of CaS:Pb deposited by ALD are consistent with the Pb concentration ranging from approximately 0.5 to 3 mol.%.

  • PDF

Analysis the Reliability of Multilayer Ceramic Capacitor with inner Ni Electrode under highly Accelerated Life Test Conditions

  • Yoon, Jung-Rag;Lee, Kyung-Min;Lee, Serk-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.5-8
    • /
    • 2009
  • The reliability of multilayer ceramic capacitor with active thin dielectric layer was investigated by highly accelerated life test at various stress condition. The distribution of multilayer ceramic capacitor failure times is plotted as a function of time from Weibull distribution function. According to the test result, voltage acceleration factor is obtained from 2.24 to 2.96. The acceleration by temperature is much higher than other values of active thick dielectric layer. It is clear that median time to failure is affected by the stress voltage for high volumetric efficiency ceramic capacitors with active thin dielectric layer. The degradation under stress of voltage involves electromigration and accumulation of oxygen vacancy at Ni electrode interface of cathode.

Avalanche Phenomenon at The Ultra Shallow $N^+$-P Silicon Junctions (극히 얕은 $N^+$-P 실리콘 접합에서의 어발런치 현상)

  • Lee, Jung-Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.47-53
    • /
    • 2007
  • Ultra thin Si p-n junctions shallower than $300{\AA}$ were fabricated and biased to the avalanche regime. The ultra thin junctions were fabricated to be parallel to the surface and exposed to the surface without $SiO_2$ layer. Those junctions emitted white light and electrons when junctions were biased in the avalanche breakdown regime. Therefore, we could observe the avalanche breakdown region visually. We could also observe the influence of electric field to the current flow visually by observing the white light which correspond to the avalanche breakdown region. Arrayed diodes emit light and electrons uniformly at the diode area. But, the reverse leakage current were larger than those of ordinary diodes, and the breakdown voltage were less than 10V.

  • PDF

A Study on the Effects of the Optical Characteristics of Backlight Sources on the Photo Leakage Currents of a-Si:H Thin Film Transistor (비정질 실리콘 TFT의 광누설 전류에 Backlight 광원의 광학적 특성이 미치는 영향에 대한 연구)

  • Im, Seung-Hyeok;Kwon, Sang-Jik;Cho, Eou-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.844-847
    • /
    • 2008
  • The photo leakage currents of a conventional hydrogenated amorphous silicon(a-Si:H) thin film transistor(TFT) were investigated and analyzed in case of illumination from various light sources such as halogen lamp, cold cathode fluorescent lamp(CCFL) backlight, and white light emitting diode(LED) backlight. The photo leakage characteristics showed the apparent differences in the leakage level and in the $I_{on}/I_{off}$ ratio in spite of the similar luminances of light sources. This leakage level is expected to be related to the wavelength of the lowest intensity peak from the spectral characteristics of light sources.

Preparation of Transparent conductive oxide cathode for Top-Emission Organic Light-Emitting Device by FTS system and RF system

  • Hong, Jeong-Soo;Park, Yong-Seo;Kim, Kyung-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.23-27
    • /
    • 2010
  • We prepared Al doped ZnO thin film as a top electrode on a glass substrate with a deposited $Alq_3$ for the top emission organic Light emitting device (TEOLED) with facing target sputtering (FTS) method and radio-frequency (RF) sputtering method, respectively. Before the deposition of AZO thin film, we evaporated the $Alq_3$ on glass substrate by thermal evaporation. And we evaluated the damage of organic layer. As a result, PL intensity of $Alq_3$ on grown by FTS method showed higher than that of grown by RF sputtering method, so we found that the FTS showed the lower damage sputtering than RF sputtering. Therefore, we can expect the FTS method is promising the low-damage sputtering system that can be used as a direct sputtering on the organic layer.