• Title/Summary/Keyword: thin walled members

Search Result 75, Processing Time 0.02 seconds

An Approximate Solution for the Local Buckling Coefficient of Pultruded I-Shape Compression Members (펄트루젼 I형 단면 압축재의 국부좌굴계수 계산을 위한 근사식의 개발)

  • Joo H. J.;Jung J. H.;Lee S.;Yoon S. J.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.223-227
    • /
    • 2004
  • The pultruded structural shapes are usually composed of thin-walled plate elements. Because the composite material has relatively low elastic moduli, the design of pultruded compression members may not be governed by the material strength limit state but by the stability limit state such as the local buckling or the global buckling. Therefore, the stability limit state must be checked to design pultruded columns. In this research, the local buckling analysis of pultruded I-shape column was conducted for various composite materials using the closed-form solution. To establish the design guidelines for the local buckling of pultruded I-shape compression members, the simplified form of equation to find the local buckling coefficient of pultruded I-shape column was proposed as a function of mechanical properties and the width ratio of plate components using the results obtainde by the closed-form solution. In order to verify the validity of proposed solution, the results obtained by the proposed approximate solution were compared with those of the closed-form solution and the experimental results.

  • PDF

Flexural Strength of cold-formed steel built-up composite beams with rectangular compression flanges

  • Dar, M. Adil;Subramanian, N.;Dar, Dawood A.;Dar, A.R.;Anbarasu, M.;Lim, James B.P.;Mahjoubi, Soroush
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.171-188
    • /
    • 2020
  • The past research on cold-formed steel (CFS) flexural members have proved that rectangular hollow flanged sections perform better than conventional I-sections due to their higher torsional rigidity over the later ones. However, CFS members are vulnerable to local buckling, substantially due to their thin-walled features. The use of packing, such as firmly connected timber planks, to the flanges of conventional CFS lipped I-sections can drastically improve their flexural performance as well as structural efficiency. Whilst several CFS composites have been developed so far, only limited packing materials have been tried. This paper presents a series of tests carried out on different rectangular hollow compression flanged sections with innovative packing materials. Four-point flexural tests were carried out to assess the flexural capacity, failure modes and deformed shapes of the CFS composite beam specimens. The geometric imperfections were measured and reported. The North American Specifications and Indian Standard for cold-formed steel structures were used to compare the design strengths of the experimental specimen. The test results indicate clearly that CFS rectangular 'compression' flanged composite beams perform significantly better than the conventional rectangular hollow flanged CFS sections.

Free Torsional Vibration of Linearly Tapered I-Beams (선형(線形) 변단면(變斷面) I-형(型) 보의 비틂진동(振動))

  • Lee, Yong Woo;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1013-1021
    • /
    • 1994
  • The stiffness and mass matrices are developed for free torsional vibration analysis in linearly tapered thin-walled I-beams that takes into account the effect of warping torsion. The approximate shape functions are used for formulating stiffness and mass matrices. Significant improvements of accuracy and efficiency of free vibration analysis are achieved by using the stiffness and mass matrices developed in this study. Frequencies of free vibration of tapered members are compared with solutions based upon stepped representation of beam element and also are verified with model tests. The stiffness and mass matrices presented in this study can be used for the free vibration analysis of tapered and prismatic thin walled I-beams and space structures involving warping torsion.

  • PDF

Rigid plastic analysis for the seismic performance evaluation of steel storage racks

  • Montuori, Rosario;Gabbianelli, Giammaria;Nastri, Elide;Simoncelli, Marco
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • The aim of the paper is the prediction of the seismic collapse mode of steel storage pallet racks under seismic loads. The attention paid by the researchers on the behaviour of the industrial steel storage pallets racks is increased over the years thanks to their high dead-to-live load ratio. In fact, these structures, generally made by cold-formed thin-walled profiles, present very low structural costs but can support large and expensive loads. The paper presents a prediction of the seismic collapse modes of multi-storey racks. The analysis of the possible collapse modes has been made by an approach based on the kinematic theorem of plastic collapse extended to the second order effects by means of the concept of collapse mechanism equilibrium curve. In this way, the dissipative behaviour of racks is determined with a simpler method than the pushover analysis. Parametric analyses have been performed on 24 racks, differing for the geometric layout and cross-section of the components, designed in according to the EN16618 and EN15512 requirements. The obtained results have highlighted that, in all the considered cases, the global collapse mechanism, that is the safest one, never develops, leading to a dangerous situation that must be avoided to preserve the structure during a seismic event. Although the studied racks follow all the codes prescriptions, the development of a dissipative collapse mechanism is not achieved. In addition, also the variability of load distribution has been considered, reflecting the different pallet positions assumed during the in-service life of the racks, to point out its influence on the collapse mechanism. The information carried out from the paper can be very useful for designers and manufacturers because it allows to better understand the racks behaviour in seismic load condition.

A Study on the Design Criteria Relating to the Local Buckling of Pultruded FRP Structural Compression Members (펄트루젼 구조압축재의 국부좌굴 설계규준 개발에 관한 연구)

  • Joo, Hyung Joong;Lee, Seung Sik;Yoon, Soon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.597-606
    • /
    • 2006
  • Since FRP materials have various advantages over steel, many research activities to use them for the civil engineering applications are now in progress. The present paper deals with the local buckling behavior of FRP pultruded members as a first step toward the development of design criteria. In the design of compression members, it is very important to know not only if local buckling occurs or not but also which plate component governs local buckling, but it is not easy to perform this work in a rigorous manner. In the present paper, a simple and accurate equation which can compute the coefficients of buckling of orthotropic plates and local buckling of pultruded compression members is suggested by performing rigorous analysis, energy analysis, and parametric study. The local buckling strength and the plate component governing the local buckling behavior of thin-walled pultruded compression members can be easily determined by using the proposed equation.

A STUDY ON EXPERIMENTAL CHARACTERISTICS OF ENERGY ABSORPT10N CONTROL IN THIN-WALLED TUBES FOR THE USE OF VEHICULAR- STRUCTURE MEMBERS

  • Kim, S.-K.;Im, K.-H.;Hwang, C.-S.;Yang, I.-Y.
    • International Journal of Automotive Technology
    • /
    • v.3 no.4
    • /
    • pp.137-145
    • /
    • 2002
  • Automobiles should be designed to meet the requirements and standards for the protections of passengers in a car accident. One of safety factors is an absorbing capacity in collision. Many vehicles have been designed based on the criterion of the absorbing capacity. Therefore a controller has been developed in order to control and increase the absorbing capacity of impact energy in automobile collision. The capacity of impact energy will be improved regardless of vehicular-structure members and shapes. An air-pressure horizontal impact tester for crushing has been built up for the evaluation of energy absorbing characteristics in collision. Influence of height, thickness and clearance in the controller have been considered to predict and control the energy absorbing capacity. Aluminum alloy (Al) tubes (30,39,44 m in inner dia. and 0.8, 1.0, 1.2 m in thickness) are tested by axial loading. The energy absorbing capacity of Al tubes have been estimated in cases of with-controller and without-controller. respectively based on height. thickness, clearance of an controller.

An Experimental Study on the Behavior of Connections of Thin-Walled Cold-Formed Steel Section Frames (박판 냉간성형형강 골조의 접합부 거동에 관한 실험적 연구)

  • Kwon, Young Bong;Cho, Jong Su;Song, Jun Yeup;Kim, Gap Deuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.281-290
    • /
    • 2003
  • A series of connection tests of portal frames which were composed of cold-formed steel studs and rafters was carried out to study the moment-rotation relation, the rotational rigidity, and the yield and the ultimate moment of the connections. The main factors of the tests were the thickness, the shape of the connecting members which were made of mild steel, and the torsional restraints of the test specimens. The test results were compared with those obtained through the non-linear analysis, for verification. The secant stiffness estimated from the experimental moment-rotation curve was proposed for the rotational rigidity of semi-rigid connections, and its validity was verified in the structural frame analysis.

Behavior and design of perforated steel storage rack columns under axial compression

  • El Kadi, Bassel;Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1259-1277
    • /
    • 2015
  • The present study is focused on the behavior and design of perforated steel storage rack columns under axial compression. These columns may exhibit different types of behavior and levels of strength owing to their peculiar features including their complex cross-section forms and perforations along the member. In the present codes of practice, the design of these columns is carried out using analytical formulas which are supported by experimental tests described in the relevant code document. Recently proposed analytical approaches are used to estimate the load carrying capacity of axially compressed steel storage rack columns. Experimental and numerical studies were carried out to verify the proposed approaches. The experimental study includes compression tests done on members of different lengths, but of the same cross-section. A comparison between the analytical and the experimental results is presented to identify the accuracy of the recently proposed analytical approaches. The proposed approach includes modifications in the Direct Strength Method to include the effects of perforations (the so-called reduced thickness approach). CUFSM and CUTWP software programs are used to calculate the elastic buckling parameters of the studied members. Results from experimental and analytical studies compared very well. This indicates the validity of the recently proposed approaches for predicting the ultimate strength of steel storage rack columns.

The Study on the Axial Collapse Characteristics of Composite Thin-Walled Members for Vehicles (차체구조용 복합재 박육부재의 축압괴 특성에 관한 연구)

  • 김영남;차천석;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.195-200
    • /
    • 2001
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design for improved material properties. Composite tribes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibres, in the matrix and in the fibre-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of CFRP(Carbon Fiber Reinforced Plastics) tubes on static and impact tests. Static compression tests have been carried out using the static testing machine and impact tests have been carried out using the vertical crushing testing machine. Interlaminar number affect the energy absorption capability of CFRP tubes. Also, theoretical and experimental have the same value.

  • PDF

Free Vibrations of Linearly Tapered I-Beams (선형(線形) 변단면(變斷面) I-형(型) 부재(部材)의 자유진동(自由振動))

  • Lee, Yong Woo;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1023-1031
    • /
    • 1994
  • The closed forms of consistent mass matrix with rotational inertia matrix are developed for free vibration analysis in space sutructures containing linearly tapered members with cross section of thin-walled I-sections. The exact displacement functions are used for formulating mass matrices. The very small slopes of the tapered member are used in usual practice, such that the series expansion forms of these are also developed to avoid numerical failure in vibration analysis. Significant improvements of accuracy and efficiency of free vibation analysis are achieved by using the mass matrices developed in this study. Frequencies of free vibation of tapered members are compared with solutions based upon stepped representation of beam element in the ANSYS. The mass matrices presented in this study can be used for the free vibration analysis of tapered and prismatic members.

  • PDF