• 제목/요약/키워드: thin walled members

검색결과 75건 처리시간 0.021초

Lateral buckling of thin-walled members with openings considering shear lag

  • Wang, Quanfeng
    • Structural Engineering and Mechanics
    • /
    • 제5권4호
    • /
    • pp.369-383
    • /
    • 1997
  • The classical theory of thin-walled members is unable to reflect the shear lag phenomenon since it is based on the assumption of no shearing strains in the middle surface of the walls. In this paper, an energy equation for the lateral buckling of thin-walled members has been derived which includes the effects of torsion, warping and, especially, the shearing strains which reflect the shear lag phenomenon. A numerical analysis for the lateral buckling of thin-walled members with openings by using Galerkin's method of weighted residuals has been presented. The proposed numerical values and the predictions by experiment for the lateral buckling loads are to agree closely in the paper. The results from these comparisons show that the proposed method here is capable of predicting the lateral buckling of thin-walled members with openings. The fast convergence of the results indicates the numerical stability of the method. By the study, a very complex practical eigenvalue problem is transformed into a very simple one of solving only a linear equation with one variable.

Natural frequencies and mode shapes of thin-walled members with shell type cross section

  • Ohga, M.;Shigematsu, T.;Hara, T.
    • Steel and Composite Structures
    • /
    • 제2권3호
    • /
    • pp.223-236
    • /
    • 2002
  • An analytical procedure based on the transfer matrix method to estimate not only the natural frequencies but also vibration mode shapes of the thin-walled members composed of interconnected cylindrical shell panels is presented. The transfer matrix is derived from the differential equations for the cylindrical shell panels. The point matrix relating the state vectors between consecutive shell panels are used to allow the transfer procedures over the cross section of the members. As a result, the interactions between the shell panels of the cross sections of the members can be considered. Although the transfer matrix method is naturally a solution procedure for the one-dimensional problems, this method is well applied to thin-walled members by introducing the trigonometric series into the governing equations of the problem. The natural frequencies and vibration mode shapes of the thin-walled members composed of number of interconnected cylindrical shell panels are observed in this analysis. In addition, the effects of the number of shell panels on the natural frequencies and vibration mode shapes are also examined.

Nonlinear model to predict the torsional response of U-shaped thin-walled RC members

  • Chen, Shenggang;Ye, Yinghua;Guo, Quanquan;Cheng, Shaohong;Diao, Bo
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1039-1061
    • /
    • 2016
  • Based on Vlasov's torsional theory of open thin-walled members and the nonlinear constitutive relations of materials, a nonlinear analysis model to predict response of open thin-walled RC members subjected to pure torsion is proposed in the current study. The variation of the circulatory torsional stiffness and warping torsional stiffness over the entire loading process and the impact of warping shear deformation on the torsion-induced rotation of the member are considered in the formulation. The torque equilibrium differential equation is then solved by Runge-Kutta method. The proposed nonlinear model is then applied to predict the behavior of five U-shaped thin-walled RC members under pure torsion. Four of them were tested in an earlier experimental study by the authors and the testing data of the fifth one were reported in an existing literature. Results show that the analytical predictions based on the proposed model agree well with the experimental data of all five specimens. This clearly shows the validity of the proposed nonlinear model analyzing behavior of U-shaped thin-walled RC members under pure torsion.

The ECBL approach for interactive buckling of thin-walled steel members

  • Dubina, Dan
    • Steel and Composite Structures
    • /
    • 제1권1호
    • /
    • pp.75-96
    • /
    • 2001
  • Actual buckling curves are always characterised by the erosion of ideal buckling curves. In case of compact sections this erosion is due to the imperfections, while for thin-walled members, a supplementary erosion is induced by the phenomenon of coupled instabilities. The ECBL approach- Erosion of Critical Bifurcation Load - represents a practical and convenient tool to characterise the instability behaviour of thin-walled members. The present state-of-art paper describes the theoretical background of this method and the applications to cold-formed steel sections in compression and bending. Special attention is paid to the evaluation methods of erosion coefficient and to their validation. The ECBL approach can be also used to the plastic-elastic interactive buckling of thin-walled members, and the paper provides significant results on this line.

Effects of initial imperfections on nonlinear behaviors of thin-walled members

  • Ohga, M.;Takaue, A.;Shigematsu, T.;Hara, T.
    • Structural Engineering and Mechanics
    • /
    • 제11권5호
    • /
    • pp.519-534
    • /
    • 2001
  • The effect of the initial imperfections on the nonlinear behaviors and ultimate strength of the thin-walled members subjected to the axial loads, obtained by the finite element stability analysis, are examined. As the initial imperfections, the bucking mode shapes of the members are adopted. The buckling mode shapes of the thin-walled members are obtained by the transfer matrix method. In the finite element stability analysis, isoparametric degenerated shell element is used, and the geometrical and material nonlinearity are considered based on the Green Lagrange strain definition and the Prandtl-Reuss stress-strain relation following the von Mises yield criterion. The U-, box- and I-section members subjected to the axial loads are adopted for numerical examples, and the effects of the initial imperfections on the nonlinear behaviors and ultimate strength of the members are examined.

Experimental evaluation on the seismic performance of high strength thin-walled composite members accounting for sectional aspect ratio effect

  • Hsu, H.L.;Juang, J.L.;Luo, K.T.
    • Steel and Composite Structures
    • /
    • 제9권4호
    • /
    • pp.367-380
    • /
    • 2009
  • This study focuses on the experimental evaluation of the flexural-torsional performance of high strength thin-walled composite members. A series of tests on composite members with various sectional aspect ratios subjected to eccentric cyclic loads were conducted. Test results show that the composite member's torsional strength could be approximated using a series of linear segments and evaluated using the superposition of the component steel and reinforced concrete responses. It is also validated from the tests that the strength deterioration of members subjected to combined loads is closely related to the aspect ratios of the sections. An interaction expression between the bending and torsion for high strength thin-walled composite members is proposed for engineering practice references.

댐핑재가 도포된 차체 박육부재의 압궤특성 (The Collapse Characteristics of Vehicle Thin-walled Members Coated Damping Material)

  • 송상기;박상규;송찬일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.76-81
    • /
    • 2003
  • The purpose of this study is to analyze the collapse characteristics of widely used spot welded section members coated damping material Y1000 and to develop an analysis method for acquiring exact collapse loads and energy absorption ratio. Hat-shaped thin-walled members have the biggest energy absorbing capacity in a front-end collision. The sections were tested on quasi-static and impact loads. Specimens with two type thickness, width ratio and spot weld pitch on the flange have been tested in impact velocities(6.73n0sec and 7.54n1sec) which imitate a real-life car collision. As a result, it was developed the system for acquiring impact energy absorbing characteristics of structure united thin-walled member and damping materials.

적층조건에 따른 혼성 원형 박육부재의 충격압궤거동 (Impact Collapse Behavior of Hybrid Circular Thin-walled Member by Stacking Condition)

  • 이길성;박으뜸;양인영
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.235-240
    • /
    • 2010
  • The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, energy absorbing members should be absorbed with collision energy sufficiently. But vehicle structure must be light weight for the environmentally-friendly aspect, in order to improve fuel efficiency and to reduce tail gas emission. Therefore, the light weight of vehicle must be achieved in a status of securing safety of crash. An aluminum or CFRP (Carbon Fiber Reinforced Plastics) is representative one among the light-weight materials. In this study, impact collapse behavior of circular hybrid thin-walled member is evaluated. The hybrid members are manufactured by wrapping CFRP prepreg sheets outside the aluminum circular members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties change with its stacking condition, special attention is given to the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member. Collapse mode and energy absorption capability of the hybrid thin-walled member are analyzed with change of the fiber orientation angle and interface number.

T형 복합재료 기둥의 좌굴 (Buckling of T-Shaped Composite Columns)

  • 이승식;백성용
    • 한국철도학회논문집
    • /
    • 제9권1호
    • /
    • pp.57-62
    • /
    • 2006
  • Composite thin-walled members for civil engineering application are mainly produced by pultrusion technique, and they are generally made of a polymeric resin system reinforced by E-glass fibers due to economical reason. This material combination results in low elastic moduli of the composite materials and makes the design of composite members to be governed by stability limit state. Therefore the buckling behavior of composite thin-walled members was experimentally investigated in the present study. Axial compression was applied on each specimens by a hydraulic ram and knife edge fixtures were placed at both ends to simulate simple boundary condition. Axial compression, lateral displacements and twisting at the mid-height of each specimen were measured by a set of transducers during buckling test. The experimental buckling loads were compared with analytical results obtained through isotropic formulas. In the calculation of analytical results, elastic properties such as Young's modulus(E) and shear modulus(G) were replaced with EL and GLT obtained from coupon tests, respectively.

Analytical modeling of thin-walled box T-joints

  • Marur, Prabhakar R.
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.447-457
    • /
    • 2009
  • A general analytical method for computing the joint stiffness from the sectional properties of the members that form the joint is derived using Vlasov's thin-walled beam theory. The analytical model of box T-joint under out-of-plane loading is investigated and validated using shell finite element results and experimental data. The analytical model of the T-joint is implemented in a beam finite element model using a revolute joint element. The out-of-plane displacement computed using the beam-joint model is compared with the corresponding shell element model. The results show close correlation between the beam revolute joint model and shell element model.