• Title/Summary/Keyword: thin walled member

Search Result 54, Processing Time 0.024 seconds

Dynamic Effects for Crushing Strength of Rectangular Tubular Members (사각 튜브 부재의 압괴강도에 대한 동적 영향 평가)

  • P.D.C.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-23
    • /
    • 1990
  • When a thin walled member is subjected to compression in a condition such as collision, the energy is mainly absorbed by axial crumpling. In this case, dynamic crushing strength of the member is increased due to the effects of strain-rate compared with the static strength, even though the inertia effect is neglected. In this paper, the method of predicting the static crushing for tubular members is presented using the kinematic method of plasticity. Since, a predicted crushing load, taking account of the dynamic yield stress, usually overestimates the effects of strain-rate, the average plastic flow stress for the effects of strain-rate is used to obtain the dynamic crushing load for tubular members. The analytical results are compared with the experiments published in references, and a good correlation is observed.

  • PDF

Optimum Structural Design of Sinusoidal Corrugated Web Beam Using Real-valued Genetic Algorithm (실변수 유전자 알고리즘을 이용한 사인형 주름 웨브 보의 최적구조설계)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.581-593
    • /
    • 2011
  • The underlying advantages of using thin-walled corrugatedwebs instead of plate girders with stiffeners are the elimination of instability problems associated with buckling of the thin-walled flat plate, and elimination of the need for transverse stiffeners, which alsoresults in economic advantages. This paper focuses on two aspects related to the structural design technique forsinusoidal corrugated web steel beams, and the optimum design of the beams using real-value genetic algorithms. The structural design process and design variables used in this optimization werecomposed with EN 1993-1-5, DASt-R015 standard and Pasternak et al. (2004), and the valid design capacity of shear buckling of the standards were compared. For the optimum structural design, the objective function, presented as the fullweight of the sinusoidal corrugated web beams, and the slenderness, member forces, and maximum deflection of the beam, were considered constraints. Finally, the simple beam under the uniform load was adopted as a numerical example, and the effective probability parameters of the genetic operators were considered to find the global minimum point.

Shear behaviour of thin-walled composite cold-formed steel/PE-ECC beams

  • Ahmed M. Sheta;Xing Ma;Yan Zhuge;Mohamed A. ElGawady;Julie E. Mills;El-Sayed Abd-Elaal
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.75-92
    • /
    • 2023
  • The novel composite cold-formed steel (CFS)/engineered cementitious composites (ECC) beams have been recently presented. The new composite section exhibited superior structural performance as a flexural member, benefiting from the lightweight thin-walled CFS sections with improved buckling and torsional properties due to the restraints provided by thinlayered ECC. This paper investigated the shear performance of the new composite CFS/ECC section. Twenty-eight simply supported beams, with a shear span-to-depth ratio of 1.0, were assembled back-to-back and tested under a 3-point loading scheme. Bare CFS, composite CFS/ECC utilising ECC with Polyethylene fibres (PE-ECC), composite CFS/MOR, and CFS/HSC utilising high-strength mortar (MOR) and high-strength concrete (HSC) as replacements for PE-ECC were compared. Different failure modes were observed in tests: shear buckling modes in bare CFS sections, contact shear buckling modes in composite CFS/MOR and CFS/HSC sections, and shear yielding or block shear rupture in composite CFS/ECC sections. As a result, composite CFS/ECC sections showed up to 96.0% improvement in shear capacities over bare CFS, 28.0% improvement over composite CFS/MOR and 13.0% over composite CFS/HSC sections, although MOR and HSC were with higher compressive strength than PE-ECC. Finally, shear strength prediction formulae are proposed for the new composite sections after considering the contributions from the CFS and ECC components.

Study on the effect of ties in the intermediate length Cold Formed Steel (CFS) columns

  • Anbarasu, M.;Kumar, S. Bharath;Sukumar, S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.323-335
    • /
    • 2013
  • This work aims to study the effect of stiffener ties in the behavior of intermediate length open section Cold-Formed Steel (CFS) Columns under axial compression. A comparative study on the behaviour and strength of Cold Formed Steel Columns by changing the direction of projection of lips (i.e., inwards or outwards) are also done. In this work two types of sections were considered Type-I section with lip projecting outwards (hat) and Type-II section with lip projecting inwards (channel). The length of the columns is predicted by performing elastic buckling analysis using CUFSM software. The theoretical analysis is performed using DSM - S100;2007, AS/NZ: 4600-2005 and IS: 801-1975. The compression tests are carried out in a 400 kN loading frame with hinged-hinged end condition. The non-linear numerical analysis is performed using Finite Element software ANSYS 12.0 to simulate the experimental results. Extensive parametric study is carried out by varying the width and spacing of the stiffener ties. The results are compared; the effects of stiffener ties on behaviour and load carrying capacity on both types of columns are discussed.

A Study on the Axial Collapse Characteristics of Thin-Walled Members for Vehicles on the Variation of Section Shapes (차체구조용 박육단면부재의 단면형상변화에 따른 축압궤 특성에 관한 연구)

  • 이길성;백경윤;차천석;정진오;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1549-1552
    • /
    • 2003
  • The front-end side members of automobiles absorb most of the energy in a front-end collision. The front-end side members are required to have a high stiffness together with easiness to collapse sequentially to absorb more impact energy. The axial static collapse test (5mm/mim) was conducted by using UTM with respect to the single hat shaped section members which are the standard section shape of the spot welded section members, to the single cap shaped section members, to the double cap shaped section members and to the double hat shaped section members whose section shape are changed in order to give more stiffness. As a result of test, the energy absorbing characteristic was analyzed for different section shapes. That is, it was analyzed that the change of section shape influenced the absorbing energy, the mean collapse load and the maximum collapse load, and that the relation between the change of section shape and the collapse mode.

  • PDF

Behavior and design of perforated steel storage rack columns under axial compression

  • El Kadi, Bassel;Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1259-1277
    • /
    • 2015
  • The present study is focused on the behavior and design of perforated steel storage rack columns under axial compression. These columns may exhibit different types of behavior and levels of strength owing to their peculiar features including their complex cross-section forms and perforations along the member. In the present codes of practice, the design of these columns is carried out using analytical formulas which are supported by experimental tests described in the relevant code document. Recently proposed analytical approaches are used to estimate the load carrying capacity of axially compressed steel storage rack columns. Experimental and numerical studies were carried out to verify the proposed approaches. The experimental study includes compression tests done on members of different lengths, but of the same cross-section. A comparison between the analytical and the experimental results is presented to identify the accuracy of the recently proposed analytical approaches. The proposed approach includes modifications in the Direct Strength Method to include the effects of perforations (the so-called reduced thickness approach). CUFSM and CUTWP software programs are used to calculate the elastic buckling parameters of the studied members. Results from experimental and analytical studies compared very well. This indicates the validity of the recently proposed approaches for predicting the ultimate strength of steel storage rack columns.

Analysis of behaviour for hollow/solid concrete-filled CHS steel beams

  • Kvedaras, Audronis Kazimieras;Sauciuvenas, Gintas;Komka, Arunas;Jarmolajeva, Ela
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.293-308
    • /
    • 2015
  • Interaction between the external thin-walled steel tube and the internal concrete core significantly increases the bending resistance of composite beams and beam-columns in comparison with the steel or concrete members. There is presented a developed method for design of hollow and solid concrete-filled steel tubular beams based on test data, which gives better agreement with test results than EC4 because its limitation to take an increase in strength of concrete caused by confinement contradicts the recommendation of 6.7.2(4) that full composite action up to failure may be assumed between steel and concrete components of the member. Good agreement between the results of carried out experimental, numerical and theoretical investigations allows recommending the proposed method to use in design practice.

Axial Collapse Characteristics of Aluminum/Carbon Fiber Reinforced Plastic Composite Thin-Walled Members with Different Section Shapes (단면형상이 다른 Al/CFRP 혼성박육부재의 축압궤특성)

  • Hwang, Woo Chae;Lee, Kil Sung;Cha, Cheon Seok;Kim, Ji Hoon;Ra, Seung Woo;Yang, In Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.959-965
    • /
    • 2014
  • In the present study, we aimed to obtain design data that can be used for the side members of lightweight cars by experimentally examining the types of effects that the changes in the section shape and outermost layer of an aluminum (Al)/carbon fiber reinforced plastic (CFRP) composite structural member have on its collapse characteristics. We have drawn the following conclusions based on the test results: The circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $0^{\circ}$ was observed to be 52.9 and 49.93 higher than that of the square and hat-shaped members, respectively. In addition, the energy absorption characteristic of the circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $90^{\circ}$ was observed to be 50.49 and 49.2 higher than that of the square and hat-shaped members, respectively.

Free Vibration of Tapered Tube (선형변단면관(線形變斷面管)의 자유진동)

  • Lee, Yong Woo;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.45-54
    • /
    • 1991
  • The closed forms of mass matrix with rotational inertia matrix are developed for free vibration analysis in space structures containing linearing tapered members with cross section of thin-walled tube. The exact displacement functions are used for formulating mass matrix. The very small slopes of the tapered member are used in usual practice, such that the series expansion forms of these are also developed to avoid numerical failure in vibration analysis. Significant improvements of accuracy and efficiency of free vibration analysis are achieved by using the mass matrices developed in this study. Frequencies of free vibration of tapered members are compared with solutions based upon stepped representation of beam element.

  • PDF

The Compressive Strength of Thin-Walled Cold-Formed Steel Studs with Slits in the Web (복부에 슬릿이 있는 박판냉간성형형강 스터드의 압축강도)

  • Kwon, Young-Bong;Soe, Eung-Kyu;Lim, Duk-Man;Kim, Gap-Deuk;Kwon, In-Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.189-197
    • /
    • 2012
  • The cold-formed steel stud, which has been used as a load-bearing member of wall panels for steel houses, poses a significant problem in insulation due to heat bridging of the web. Therefore, some additional thermal insulating materials are required. In order to solve this problem, the cold-formed steel thermal stud with slits in the web was developed. However, estimating the structural strength of thermal studs is very difficult because of the arrangement of perforations. In this paper, an analytical and experimental research on thermal studs is described. Three types of studs with different length, pitch and arrangement of slits were tested to failure. A simple design approach was proposed based on the test results. The proposed method adopted the direct strength method, based on the elastic local and distortional buckling stress of plain studs with equivalent thickness in the web instead of thermal studs. The predictions using the proposed method were compared with test results for verification and the adequacy of the proposed method was confirmed.