• Title/Summary/Keyword: thin organic coatings

Search Result 24, Processing Time 0.03 seconds

Effect of Solvents on the Photochromic Properties of Spiropyran in Hard Coating Films Prepared by Sol-Gel Method (Spiropyran의 분산용매가 Sol-Gel 하드 코팅 막의 광 변색 특성에 미치는 영향)

  • Kim, Dae Hyun;Shin, Yong Tak;Lee, Ju Yeon;Hong, Wongil;Lee, Bum Suk;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.430-435
    • /
    • 2009
  • Spiropyran-doped organic-inorganic hybrid coatings were prepared starting from glycidoxypropyl triethoxysilane and vinyltriethoxysilane by a sol-gel method. They were applied as a thin layer to polycarbonate sheets and their photochromic properties were investigated. The effect of polarity of solvents dissolving the spiropyran was investigated on the photochromic properties. The decoloration rate of the spiropyran decreased with increasing the polarity of solvents dissolving the spiropyran because the open form of the spiropyran was easily stabilized in the polar gel matrix.

Hydrophillic and Hydrophobic Properties of Sol-Gel Processed Sillica Coating Layers

  • Kim, Eun-Kyeong;Lee, Chul-Sung;Hwang, Tae-Jin;Kim, Sang-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.505-505
    • /
    • 2011
  • The control of wettability of thin films is of great importance and its success surely brings us huge applications such as self-cleaning, antifogging and bio-passive treatments. Usually, the control is accomplished by modifying either surface energy or surface topography of films. In general, hydrophobic surface can be produced by coating low surface energy materials such as fluoropolymer or by increasing surface roughness. In contrast, to enhance the hydrophillicity of solid surfaces, high surface energy and smoothness are required. Silica (SiO2) is environmentally safe, harmless to human body and excellently inert to most chemicals. Also its chemical composition is made up of the most abundant elements on the earth's crest, which means that SiO2 is inherently economical in synthesis. Moreover, modification in chemistry of SiO2 into various inorganic-organic hybrid materials and synthesis of films are easily undertaken with the sol-gel process. The contact angle of water on a flat silica surface on which the Young's equation operates shows ~50o. This is a slightly hydrophilic surface. Many attempts have been made to enhance hydrophilicity of silica surfaces. In recent years, superhydrophilic and antireflective coatings of silica were fabricated from silica nanoparticles and polyelectrolytes via a layer-by-layer assembly and postcalcination treatment. This coating layer has a high transmittance value of 97.1% and a short water spread time to flat of <0.5 s, indicating that both antireflective and superhydrophilic functions were realized on the silica surfaces. In this study, we assessed hydrophillicity and hydrophobicity of silica coating layers that were synthesized using the sol-gel process. Systematic changes of processing parameters greatly influence their surface properties.

  • PDF

Effects of Passivation Thin Films by Spray Coatings on Properties of Flexible CIGS Solar Cells (스프레이코팅법에 의한 패시베이션 박막이 플렉시블 CIGS 태양전지의 특성에 미치는 영향)

  • Lee, Sang Hee;Park, Byung Min;Kim, Ki Hong;Chang, Young Chul;Pyee, Jaeho;Chang, Ho Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.57-61
    • /
    • 2016
  • In order to protect the solar cells from the moisture and oxygen, we evaluated the electrical and optical properties for the $Cu(In,Ga)Se_2$ (CIGS) solar cells which were prepared by the spray coating method. Generally, the EVA (ethylene-vinyl acetate) films are laminated to protect the CIGS flexible solar cells, which results in a high cost process due to complicated devices. In this study, we tried to prepare the protection layers of the flexible CIGS flexible solar cells by using spray coating method instead of conventional laminating films in order to reduce the device weight as well as the process time. The CIGS solar cells with spray coating method showed an enhanced efficiency than the before treated sample (2.77% to 2.93%) and relatively proper water vapor transmission rate of the solar cells about 62.891 gm/[$m^2-day$].

Electrochemical Characterization of Anti-Corrosion Film Coated Metal Conditioner Surfaces for Tungsten CMP Applications (텅스텐 화학적-기계적 연마 공정에서 부식방지막이 증착된 금속 컨디셔너 표면의 전기화학적 특성평가)

  • Cho, Byoung-Jun;Kwon, Tae-Young;Kim, Hyuk-Min;Venkatesh, Prasanna;Park, Moon-Seok;Park, Jin-Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Chemical Mechanical Planarization (CMP) is a polishing process used in the microelectronic fabrication industries to achieve a globally planar wafer surface for the manufacturing of integrated circuits. Pad conditioning plays an important role in the CMP process to maintain a material removal rate (MRR) and its uniformity. For metal CMP process, highly acidic slurry containing strong oxidizer is being used. It would affect the conditioner surface which normally made of metal such as Nickel and its alloy. If conditioner surface is corroded, diamonds on the conditioner surface would be fallen out from the surface. Because of this phenomenon, not only life time of conditioners is decreased, but also more scratches are generated. To protect the conditioners from corrosion, thin organic film deposition on the metal surface is suggested without requiring current conditioner manufacturing process. To prepare the anti-corrosion film on metal conditioner surface, vapor SAM (self-assembled monolayer) and FC (Fluorocarbon) -CVD (SRN-504, Sorona, Korea) films were prepared on both nickel and nickel alloy surfaces. Vapor SAM method was used for SAM deposition using both Dodecanethiol (DT) and Perfluoroctyltrichloro silane (FOTS). FC films were prepared in different thickness of 10 nm, 50 nm and 100 nm on conditioner surfaces. Electrochemical analysis such as potentiodynamic polarization and impedance, and contact angle measurements were carried out to evaluate the coating characteristics. Impedance data was analyzed by an electrical equivalent circuit model. The observed contact angle is higher than 90o after thin film deposition, which confirms that the coatings deposited on the surfaces are densely packed. The results of potentiodynamic polarization and the impedance show that modified surfaces have better performance than bare metal surfaces which could be applied to increase the life time and reliability of conditioner during W CMP.