• 제목/요약/키워드: thin metal film

검색결과 1,247건 처리시간 0.027초

수소 도핑효과에 의한 ZnO 맴트랜지스터 소자특성 (Resistive Switching Characteristic of ZnO Memtransistor Device by a Proton Doping Effect)

  • 손기훈;강경문;박형호;이홍섭
    • 마이크로전자및패키징학회지
    • /
    • 제27권1호
    • /
    • pp.31-35
    • /
    • 2020
  • 원자층 증착법(ALD: atomic layer deposition)으로 성장된 ZnO n-type 산화물반도체를 이용하여 three terminal memristor (memtransistor) 소자를 제작하여 습도에 따른 그 특성을 관찰하였다. 40 nm 두께의 ZnO 박막을 이용하여 channel width 70 ㎛, length 5 ㎛, back gate 구조의 memtransistor 소자를 제작하여 습도에 (40%, 50%, 60%, 70%) 따른 gate tunable memristive 특성변화를 관찰하였다. 습도가 높아질수록 electron mobility와 gate controllability가 감소하여 수소도핑효과에 의한 carrier 농도가 증가하는 거동의 output curve가 관찰되었다. 60%, 70%의 습도에서 memristive 거동이 관찰되었으며 습도가 높아질수록 on/off ratio는 증가하는 반면 gate controllability가 감소하였다. 60% 습도에서 가장 우수한 특성의 gate tunable memristive 특성을 얻을 수 있었다.

Poly-4-vinylphenol and Poly (melamine-co-formaldehyde)-based Tungsten Diselenide (WSe2) Doping Method

  • Nam, Hyo-Jik;Park, Hyung-Youl;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.194.1-194.1
    • /
    • 2015
  • Transition metal dichalcogenide (TMD) with layered structure, has recently been considered as promising candidate for next-generation flexible electronic and optoelectronic devices because of its superior electrical, optical, and mechanical properties.[1] Scalability of thickness down to a monolayer and van der Waals expitaxial structure without surface dangling bonds (consequently, native oxides) make TMD-based thin film transistors (TFTs) that are immune to the short channel effect (SCE) and provide very high field effect mobility (${\sim}200cm^2/V-sec$ that is comparable to the universal mobility of Si), respectively.[2] In addition, an excellent photo-detector with a wide spectral range from ultraviolet (UV) to close infrared (IR) is achievable with using $WSe_2$, since its energy bandgap varies between 1.2 eV (bulk) and 1.8 eV (monolayer), depending on layer thickness.[3] However, one of the critical issues that hinders the successful integration of $WSe_2$ electronic and optoelectronic devices is the lack of a reliable and controllable doping method. Such a component is essential for inducing a shift in the Fermi level, which subsequently enables wide modulations of its electrical and optical properties. In this work, we demonstrate n-doping method for $WSe_2$ on poly-4-vinylphenol and poly (melamine-co-formaldehyde) (PVP/PMF) insulating layer and adjust the doping level of $WSe_2$ by controlling concentration of PMF in the PVP/PMF layer. We investigated the doping of $WSe_2$ by PVP/PMF layer in terms of electronic and optoelectronic devices using Raman spectroscopy, electrical measurements, and optical measurements.

  • PDF

폴리머 재료를 이용한 유연 수직/수평 힘 센서 어레이 개발 및 응용 (Development and Application of Polymer-based Flexible Force Sensor Array)

  • 황은수;윤영로;윤형로;신태민;김용준
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.142-149
    • /
    • 2009
  • This paper proposes and demonstrates novel flexible contact force sensing devices for 3-dimensional force measurement. To realize the sensor, polyimide and polydimethylsiloxane are used as a substrate, which makes it flexible. Thin-film metal strain gauges, which are incorporated into the polymer, are used for measuring the three-dimensional contact forces. The force sensor characteristics are evaluated against normal and shear load. The fabricated force sensor can measure normal loads up to 4N. The sensor output signals are saturated against load over 4N. Shear loads can be detected by different voltage drops in strain gauges. The device has no fragile structures; therefore, it can be used as a ground reaction force sensor for balance control in humanoid robots. Four force sensors are assembled and placed in the four corners of the robot's sole. By increasing bump dimensions, the force sensor can measure load up to 20N. When loads are exerted on the sole, the ground reaction force can be measured by these four sensors. The measured forces can be used in the balance control of biped locomotion system.

Newly Synthesized Silicon Quantum Dot-Polystyrene Nanocomposite Having Thermally Robust Positive Charge Trapping

  • Dung, Mai Xuan;Choi, Jin-Kyu;Jeong, Hyun-Dam
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.221-221
    • /
    • 2013
  • Striving to replace the well known silicon nanocrystals embedded in oxides with solution-processable charge-trapping materials has been debated because of large scale and cost effective demands. Herein, a silicon quantum dot-polystyrene nanocomposite (SiQD-PS NC) was synthesized by postfunctionalization of hydrogen-terminated silicon quantum dots (H-SiQDs) with styrene using a thermally induced surface-initiated polymerization approach. The NC contains two miscible components: PS and SiQD@PS, which respectively are polystyrene and polystyrene chains-capped SiQDs. Spin-coated films of the nanocomposite on various substrate were thermally annealed at different temperatures and subsequently used to construct metal-insulator-semiconductor (MIS) devices and thin film field effect transistors (TFTs) having a structure p-$S^{++}$/$SiO_2$/NC/pentacene/Au source-drain. C-V curves obtained from the MIS devices exhibit a well-defined counterclockwise hysteresis with negative fat band shifts, which was stable over a wide range of curing temperature ($50{\sim}250^{\circ}C$. The positive charge trapping capability of the NC originates from the spherical potential well structure of the SiQD@PS component while the strong chemical bonding between SiQDs and polystyrene chains accounts for the thermal stability of the charge trapping property. The transfer curve of the transistor was controllably shifted to the negative direction by chaining applied gate voltage. Thereby, this newly synthesized and solution processable SiQD-PS nanocomposite is applicable as charge trapping materials for TFT based memory devices.

  • PDF

Micromachined ZnO Piezoelectric Pressure Sensor and Pyroelectric Infrared Detector in GaAs

  • Park, Jun-Rim;Park, Pyung
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권2호
    • /
    • pp.239-244
    • /
    • 1998
  • Piezoelectric pressure sensors and pyroelectric infrared detectors based on ZnO thin film have been integrated with GaAs metal-semiconductor field effect transistor (MESFET) amplifiers. Surface micromachining techniques have been applied in a GaAs MESFET process to form both microsensors and electronic circuits. The on-chip integration of microsensors such as pressure sensors and infrared detectors with GaAs integrated circuits is attractive because of the higher operating temperature up to 200 oC for GaAs devices compared to 125 oC for silicon devices and radiation hardness for infrared imaging applications. The microsensors incorporate a 1${\mu}$m-thick sputtered ZnO capacitor supported by a 2${\mu}$m-thick aluminum membrane formed on a semi-insulating GaAs substrate. The piezoelectric pressure sensor of an area 80${\times}$80 ${\mu}$m2 designed for use as a miniature microphone exhibits 2.99${\mu}$V/${\mu}$ bar sensitivity at 400Hz. The voltage responsivity and the detectivity of a single infrared detector of an area 80${\times}$80 $\mu\textrm{m}$2 is 700 V/W and 6${\times}$108cm$.$ Hz/W at 10Hz respectively, and the time constant of the sensor with the amplifying circuit is 53 ms. Circuits using 4${\mu}$m-gate GaAs MESFETs are fabricated in planar, direct ion-implanted process. The measured transconductance of a 4${\mu}$m-gate GaAs MESFET is 25.6 mS/mm and 12.4 mS/mm at 27 oC and 200oC, respectively. A differential amplifier whose voltage gain in 33.7 dB using 4${\mu}$m gate GaAs MESFETs is fabricated for high selectivity to the physical variable being sensed.

  • PDF

양극산화와 열수처리한 니오비움 금속의 표면특성 (Surface Characterization of Anodized and Hydrothermal Treated Niobium Metal)

  • 원대희;김영순;윤동주;이민호;배태성
    • 한국재료학회지
    • /
    • 제15권2호
    • /
    • pp.134-138
    • /
    • 2005
  • This study was performed to investigate the surface properties of electrochemically oxidized pure niobium by anodic oxide and hydrothermal treatment technique. Niobium specimens of $10mm\times10mm\times1.0mm$ in dimension were polished sequentially from $\#600,\;\#800,\;\#1000$ emery paper. The surface of pure niobium sperimens was anodized in an electrolytic solution that was dissolved calcium and phosphate in water. The electrolytic voltage was set in the range of 250 V and the current density was $10mA/cm^2$. The specimen was hydrothermal treated in high-pressure steam at $300^{\circ}C$ for 2 hours using an autoclave. And all specimens were immersed in the in the Hanks' solution nth pH 7.4 at $37^{\circ}C$ for 30 days. The surface of specimen was characterized by surface roughness, scanning electron microscope(SEM), energy dispersion X-ray analysis(EDX), X-ray photoemission spectroscopy(XPS) test. The value of surface roughness was the highest in the anodized sample and $0.41{\pm}0.04\;{\mu}m$. The results of the SEM observation show that oxide layers of the multi porosity in the anodized sample were piled up on another, and hydroxyapatite crystal was precipitate from the surface of the hydrothermal treated sample. In the XPS analysis, O, Nb, C peak and small amounts of N peak were found in the polished specimens while Ca and P peak in addition to O, Nb, C and peak were observed in the hydrothermal treated sample.

Effect of few-walled carbon nanotube crystallinity on electron field emission property

  • Jeong, Hae-Deuk;Lee, Jong-Hyeok;Lee, Byung-Gap;Jeong, Hee-Jin;Lee, Geon-Woong;Bang, Dae-Suk;Cho, Dong-Hwan;Park, Young-Bin;Jhee, Kwang-Hwan
    • Carbon letters
    • /
    • 제12권4호
    • /
    • pp.207-217
    • /
    • 2011
  • We discuss the influence of few-walled carbon nanotubes (FWCNTs) treated with nitric acid and/or sulfuric acid on field emission characteristics. FWCNTs/tetraethyl orthosilicate (TEOS) thin film field emitters were fabricated by a spray method using FWCNTs/TEOS sol one-component solution onto indium tin oxide (ITO) glass. After thermal curing, they were found tightly adhered to the ITO glass, and after an activation process by a taping method, numerous FWCNTs were aligned preferentially in the vertical direction. Pristine FWCNT/TEOS-based field emitters revealed higher current density, lower turn-on field, and a higher field enhancement factor than the oxidized FWCNTs-based field emitters. However, the unstable dispersion of pristine FWCNT in TEOS/N,N-dimethylformamide solution was not applicable to the field emitter fabrication using a spray method. Although the field emitter of nitric acid-treated FWCNT showed slightly lower field emission characteristics, this could be improved by the introduction of metal nanoparticles or resistive layer coating. Thus, we can conclude that our spray method using nitric acid-treated FWCNT could be useful for fabricating a field emitter and offers several advantages compared to previously reported techniques such as chemical vapor deposition and screen printing.

TiO2/ITO 나노구조체 광전극의 합성 및 염료감응 태양전지에의 적용 (Synthesis of TiO2/ITO Nanostructure Photoelectrodes and Their Application for Dye-sensitized Solar Cells)

  • 김대현;박경수;최영진;최헌진;박재관
    • 한국세라믹학회지
    • /
    • 제48권1호
    • /
    • pp.94-98
    • /
    • 2011
  • A Sn-doped $In_2O_3$ (ITO) nanowire photoelectrode was produced using a simple metal evaporation method at low synthesis temperature (< $540^{\circ}C$). The nanowire electrodes have large surface area compared with that of flat ITO thin film, and show low electrical resistivity of $5.6{\times}10^{-3}{\Omega}cm$ at room temperature. In order to apply ITO nanowires to the photoelectrodes of dye-sensitized solar cell (DSSC), those surfaces were modified by $TiO_2$ nanoparticles using a chemical bath deposition (CBD) method. The conversion efficiency of the fabricated $TiO_2$/ITO nanostructure-based DSSC was obtained at 1.4%, which was increased value by a factor of 6 than one without ITO nanowires photoelectrode. This result is attributed to the large surface area and superior electrical property of the ITO nanowires photoelectrode, as well as the structural advantages, including short diffusion length of photo-induced electrons, of the fabricated $TiO_2$/ITO nanostructure-based DSSC.

전기영동 디스플레이 패널용 OTFT-하판 제작 연구 (Study on OTFT-Backplane for Electrophoretic Display Panel)

  • 이명원;류기성;송정근
    • 대한전자공학회논문지SD
    • /
    • 제45권7호
    • /
    • pp.1-8
    • /
    • 2008
  • 본 논문에서는 플라스틱 기판에 OTFT를 스위칭 소자로 사용하여 유연한 EPD 패널을 제작하였다. OTFT의 채널 폭과 길이의 비(W/L)는 EPD의 응답속도를 고려하여 15이상으로 설계를 하였다. 게이트전극은 Al, 절연층은 cross-linked PVP, 반도체층은 펜타센, 중간층은 PVA/Acryl를 사용하였다. 플라스틱 기판은 보호층 처리를 통하여 열처리 공정 시 발생하는 입자를 제거하였고, 거친 표면을 평탄화하였다. 반도체층의 크기는 게이트 전극 보다 작도록 제한하여 누설전류를 줄일 수 있었다. EPD-상판과 OTFT-하판 사이에 픽셀전극을 삽입하고 또한 OTFT-하판을 보호하기 위하여 PVA/Acryl로 구성된 중간층을 상빙하였다. 완성된 OTFT-하판에서 OTFT의 이동도는 $0.21cm^2/V.s$, 전류점멸비(Ion/Ioff)는 $10^5$ 이상의 성능을 보였다.

ITO, AZO, SZO 박막의 수소 플라즈마에 대한 안정성 (The stability of ITO, AZO and SZO thin films in hydrogen plasma)

  • 임원택;안유신;이상기;안일신;이창효
    • 한국진공학회지
    • /
    • 제6권3호
    • /
    • pp.227-234
    • /
    • 1997
  • ITO, AZO, SZO 투명전도박막의 수소 플라즈마에 대한 안정성에 관하여 연구하였 다. ITO는 Corning 사의 제품을 사용하였고, AZO와 SZO는 rf magnetron sputtering 방법 으로 증착한 것을 이용하였다. 이 세가지 투명전도박막을 PECVD 챔버 내에 장착한 다음, 수소 플라즈마에 노출시켰다. 이 때 ITO 박막의 광투과도는 시편 표면의 온도와 시간이 증 가할수록 감소하였는데 특히 $300^{\circ}C$에서 30분간 노출시켰을 때 10~20%정도의 광투과도를 나타내었으며, 박막의 전도성을 완전히 잃어 버렸다. 반면 AZO와 SZO의 경우, 수소 플라즈 마 노출 온도와 시간에 대해 전반적으로 광투과도 손실이 나타나지 않았다. 하지만 박막내 수소의 유입으로 인하여 흡수대가 단파장 쪽으로 이동하는 'Burstein-Moss'효과가 나타났 다. 또한 표면구조에서도 AZO와 SZO가 수소 플라즈마 노출에 대해 안정성을 보인 반면 ITO의 표면은 indium과 tin의 금속입자로의 환원으로 인해 매우 거칠어짐을 보였다.

  • PDF