• 제목/요약/키워드: thin disk

검색결과 189건 처리시간 0.021초

VERTICAL STRUCTURE OF NGC 4631

  • Ann, Hong-Bae;Seo, Mi-Ra;Baek, Su-Ja
    • 천문학회지
    • /
    • 제44권1호
    • /
    • pp.23-32
    • /
    • 2011
  • We present a deep CCD imaging in B and V bands which allows us to analyze the vertical structure of NGC 4631. We derive the scale heights of the thin and thick disks at a variety of positions along the major axis of the disk. The scale heights of the thin disk are nearly constant while those of the thick disk tend to increase with increasing galactocentric distance. The mean scale heights of the thin disk derived from B and V images are similar to each other (~ 450 pc). Instead, those of the thick disk show a strong east-west asymmetry which is caused by the diffuse stellar emission that is most prominent in the north west regions above the disk plane. The ratio of scale heights ($z_{thick}/z_{thin}$) is about 2.5 in the east side of the disk. However, this ratio is greater than 4 for the thick disk above the disk plane in the west side of the galaxy.

EFFECTS OF WINDS ON THE STABILITY OF A THIN DISK

  • LI, SHUANG-LIANG
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.603-604
    • /
    • 2015
  • Standard thin disk theory predicts that an inner disk region dominated by radiation pressure is thermally unstable. However, this kind of instability isn't detected in the observations of X-ray binaries. In this work, we revisit this issue by investigating the stability of a thin disk with magnetically driven winds. It is found that the disk winds can help to make a thin disk stable by taking away most of the energy released in the disk, resulting in a much cooler disk. The disk can always be stable even for a very weak initial field strength ${\beta}_{p,0}{\leq}400$ when ${\alpha}=0.05$ and $B{\phi}=10B_p$ are adopted.

VERTICAL DENSITY DISTRIBUTION OF THE GALAXY FROM STAR COUNT ANALYSIS

  • Sohn, Young-Jong
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권1호
    • /
    • pp.19-24
    • /
    • 2002
  • The five space density distribution D(z) wish distance perpendicular to the Galactic plane were combined. The scale heights and the local densities at z = 0 of the thin disk, thick disk, and the halo components were estimated from the nonlinear least square fits of exponential law. The scale heights of the thin disk, thick disk, and the halo components were estimated to be $260{\pm}90$ pc, $660{\pm}220$ pc, and $3.6{\pm}1.4$ kpc, respectively. The density ratio of each components to the thin disk component at the galactic plane, i.e., z = 0.0, were also derived as 1 :0.07:0.002. Our model fit suggests that the thick disk component has a local density of 6.9% relative to the thin disk.

On the origin of the thick discs of spiral galaxies from high-resolution cosmological simulations

  • Yi, Sukyoung K.;Park, Min-Jung;Peirani, Sebastien;Pichon, Christophe;Dubois, Yohan;Choi, Hoseung;Devriendt, Julien;Kimm, Taysun;Kaviraj, Sugata;Kraljic, Katarina;Volonteri, Marta
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.37.3-38
    • /
    • 2020
  • Ever since thick disk was proposed to explain the vertical distribution of the Milky Way disk stars, its origin has been a recurrent question. We aim to answer this question by inspecting 19 disk galaxies with stellar mass greater than 10^10 solar mass in recent cosmological high-resolution (>34 pc) zoom-in simulations: Galactica and New Horizon. The thin and thick disks are reproduced by the simulations with scale heights and luminosity ratios that are in reasonable agreement with observations. When we spatially classify the disk stars into thin and thick disks by their heights from the galactic plane, the "thick" disk stars are older, less metal-rich, kinematically hotter, and higher in accreted star fraction than the "thin" disk counterparts. However, we found that the the thick disk stars were spatially and kinematically thinner when they were born. Indeed, a large fraction of thick disk stars was born near the galactic plane at earlier times and get heated with time, eventually occupying high altitudes and exhibiting different population properties compared to the thin-disk stars. In conclusion, from our simulations, the thin and thick disk components are not entirely distinct at birth, but rather a result of the time evolution of the stars born in the main disk of the galaxy. (excerpted from the abstract of the upcoming paper submitted to Astrophysical Journal: Park, M.-J., Yi, S.K. et al. 2020)

  • PDF

Observational Constraints on the Formation of the Milky Way's Disk

  • Han, Doori;Lee, Young Sun;Kim, Youngkwang;Beers, Timothy C.
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.51.4-52
    • /
    • 2017
  • We present the derived kinematic characteristics of low-${\alpha}$ thin-disk and high-${\alpha}$ thick-disk stars in the Milky Way, investigated with a sample of about 33,900 G- and K-type dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE). Based on the level of ${\alpha}$-element enhancement as a function of [Fe/H], we separate our sample into thin- and thick-disk stars and then derive mean velocity, velocity dispersion, and velocity gradients for the U, V and W velocity components, respectively, as well as the orbital eccentricity distribution. There are notable gradients in the V velocity over [Fe/H] in both populations: -23 km s-1 dex-1 for the thin disk and +44 km s-1 dex-1 for the thick disk. The velocity dispersion of the thick disk decrease with increasing [Fe/H], while the velocity.

  • PDF

충격공진시험을 활용한 얇은 원판형 아스팔트 콘크리트 시편의 탄성계수 결정 (Determination of Dynamic Modulus of Thin-Disk-Shaped Asphalt Concrete Specimens Using Impact Resonance Test)

  • 김다혜;임정혁;김영수
    • 한국도로학회논문집
    • /
    • 제18권4호
    • /
    • pp.37-45
    • /
    • 2016
  • PURPOSES : The objective of this study was to develop an impact resonance (IR) test procedure for thin disk-shaped specimens in order to determine the ${\mid}E^*{\mid}$ and phase angle values of various asphalt mixtures. METHODS : An IR test procedure was developed for evaluating thin disk-shaped specimens, in order to determine the dynamic modulus (${\mid}E^*{\mid}$) of various asphalt mixtures. The IR test method that was developed to determine the elastic modulus values of Portland cement concrete was evaluated, which method uses axisymmetric flexural vibration proposed by Leming et al. (1996). The IR tests were performed on three different mixtures of New York with varying nominal maximum aggregate sizes (NY9.5, NY19, and NY25) at six different temperatures ($10-60^{\circ}C$). The ${\mid}E^*{\mid}$ values obtained from the IR tests were compared with those determined by the commonly used AASHTO T342-11 test. RESULTS AND CONCLUSIONS : The IR test method was employed to determine the ${\mid}E^*{\mid}$ values of thin-disk-shaped specimens of various asphalt mixtures. It was found that the IR test method when used with thin disk-like specimens is a simple, practical, and cheap tool for determining the ${\mid}E^*{\mid}$ values of field cores. Further, it was found the ${\mid}E^*{\mid}$ values obtained from the IR tests using thin disk-like specimens were almost similar to those obtained using the AASHTO T342-11 test.

Posterior Disk Displacement in the Temporomandibular Joint: A Report of Two Cases

  • Kim, Jihoon;Kim, Moon-Jong;Kho, Hong-Seop
    • Journal of Oral Medicine and Pain
    • /
    • 제41권3호
    • /
    • pp.137-143
    • /
    • 2016
  • Posterior disk displacement (PDD) of the temporomandibular joint (TMJ) is a rare condition and most descriptions of TMJ PDD are about the adhesion of superior TMJ in which the position of disk is relatively posterior to anteriorly translated condyle in open mouth position. However, there have been reports about truly posteriorly positioned disk to the condyle in closed mouth position. This type of PDD has been classified into three subtypes-thin flat disk type, grossly posterior displaced disk type, and perforated disk type. Here, we report two rare cases of TMJ PDD, one with thin flat disk and one with perforated disk. Its possible etiology, pathogenetic mechanisms, related signs and symptoms, differential diagnoses, and treatments were reviewed and discussed.

회전축에 대한 스펙트럴요소 모델링 (Spectral Element Modeling for Rotating Shafts)

  • 이재상;용석진;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.749-754
    • /
    • 2007
  • In this paper, the vibration of a rotating shaft with a thin rigid disk is considered. It is assumed that the shaft has uniform, circular cross-section. Based on the Timoshenko-beam theory, the transverse displacements and slops in two lateral directions, the axial displacement, and the torsional deformation are considered. The spectral element method is used for the vibration analysis of the rotating shaft with a thin rigid disk, which is modeled by two shaft elements and a thin rigid disk element.

  • PDF

Thin CNTs nanoliquid film development over a rough rotating disk

  • Swatilekha Nag;Susanta Maity;Sanjeev K. Metya
    • Advances in nano research
    • /
    • 제15권2호
    • /
    • pp.91-104
    • /
    • 2023
  • Development of thin carbon nanotubes (CNTs) nanoliquid film over the rough surface of a horizontal rotating disk is investigated by considering symmetric roughness either along the azimuthal or radial directions. The disk surface is either heated or cooled axisymmetrically from below. The effects of single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) are analyzed on the film thinning process with different types of base liquids. Closed form solutions for velocity and temperature field are obtained for small values of Reynolds number whereas the numerical solution is derived for moderate values of Reynolds number. It is found that fluid retention / depletion takes place when the roughness is symmetric along the azimuthal / radial directions. It is also seen that the film thinning rate enhances for MWCNTs compare to SWCNTs. Further it is found that two different heat transfer regions exits within the flow domain depending on the fact that heat is transferred from disk to liquid film and vice-versa.