• Title/Summary/Keyword: thin coating

Search Result 1,320, Processing Time 0.033 seconds

The Study of Color and Hardness of TiN Thin Film by UBM Sputtering System (UBM Sputtering System에 의한 TiN막의 색상과 경도에 관한 연구)

  • Park, Moon Chan;Lee, Jong Geun;Joo, Kyung Bok
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Purpose: TiN films were deposited on sus304 by unbalanced magnetron sputtering system which was designed and developed as unbalancing the strength of the magnets in the magnetron electrode. The color and hardness of deposited TiN films was investigated. Methods: The cross sections of deposited films on silicon wafer were observed by SEM to measure the thickness of the films, the components of the surface of the films were identified by XPS, the components of the inner parts of the films were observed by XPS depth profiling. XPS high resolution scans and curve fittings of deposited films were performed for quantitative chemical analysis, Vickers micro hardness measurements of deposited films were performed with a nano indenter equipment. Results: The colors of deposited films gradually changed from light gold to dark gold, light violet, and indigo color with increasing of the thickness. It could be seen that the color change come from the composite change of three compound,$TiO_{x}N_{y}$, $TiO_2$, TiN. Especially, the composite change of$TiO_{x}N_{y}$ compound was thought to affect the color change with respect to thickness. Conclusions: Deposited films had lower than the value of general TiN film in Vickers hardness, which was caused by mixing three TiN, $TiO_2$,$TiO_{x}N_{y}$ compound in the deposited films. The increasing and decreasing of micro hardness with respect to thickness was thought to have something to do with the composite of TiN in the films.

  • PDF

Preparation of Cellulose-Based Edible Film and its Physical Characteristics (Cellulose를 이용한 가식성(可食性) Film의 제조와 물리적 특성연구)

  • Song, Tae-Hee;Kim, Chul-Jai
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • Three formulations were used to prepare the cellulose-based edible films consisting of hydrocolloid and lipids; film A made by coating method, films B and C by emulsion method, which were formed in a thin layer glass plate and then dried. Films A, B and C were all approximately 0.03 mm thick with 1-3% moisture, 59-68% lipid, and almost whitish color. Film A was better in tensile strength, and lipids affected water vapor permeability on three films, in which films A and B did not differ significantly. Water vapor permeability of film A did not change but those of films B and C decreased significantly after storage for 8 weeks at $-15^{\circ}C$. Oxygen transmission rate and oxygen permeability of films A and C did not differ and changed significantly after 8-week storage at $-15^{\circ}C$. Under scanning electron microscope (SEM) observation on the structural characteristics of each film, film A indicated relatively uniform and smooth surface coatings of beeswax, while films B and C had individual lipid crystals and could be discerned. As a result, film A was better than films B and C in respect of physical properties, but the selection of useful film depended upon which physical property was more functional. Moreover, it was desirable in some cases for using films B and C because of their easiness of preparation and cold storage durability. It will be further needed to investigate how to formulate films B and C to have more unique surface characteristics, and to reduce water vapor and oxygen transmission rates.

  • PDF

Fabrication and optical characteristics of 50 ㎓ narrow band pass filter for fiber optical communication using dual ion beam sputtering technique (이중 이온빔 스퍼터링 방식을 사용한 채널 간격 50 ㎓ 광통신용 협대역 투과 필터의 제작 및 특성)

  • 김회경;김명진
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.331-337
    • /
    • 2003
  • This paper represents 50 ㎓ narrow band pass filters for fiber optical communication fabricated by dual ion beam sputtering method. We have analyzed the characteristics of the TA$_2$ $O_{5}$ and $SiO_2$ single layers in order to optimize the process conditions for the 50 ㎓ narrow band pass filters, and controlled the film thickness uniformity to less than 0.1 nm deviation by dual peak spike filter pre-deposition. We designed and fabricated 50 ㎓ narrow band pass filters that consist of 216 layers including 4 cavities based on quarter wave optical thickness. Class substrates with high thermal expansion coefficients were used to reduce the film stress. Anti-reflection coating at the rear side of the substrate was also needed to reduce the optical thickness errors of the Optical Monitoring System caused by multiple beam interference between the front side and the rear side of substrate. The optical characteristics of this 50 ㎓ narrow band pass filters are insertion loss of 0.40 ㏈, pass band ripple of 0.20 ㏈, and pass bandwidth at -0.5 ㏈ of 0.20 nm. and isolation bandwidth at -25 ㏈ of 0.6 nm, which satisfy specifications of dense WDM system in fiber optical communications.tions.

Development of a Silicon Carbide Large-aperture Optical Telescope for a Satellite (SiC를 이용한 대구경 위성용 망원경 제작)

  • Bae, Jong In;Lee, Haeng Bok;Kim, Jeong Won;Lee, Kyung Mook;Kim, Myung-Whun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.2
    • /
    • pp.74-83
    • /
    • 2022
  • The entire process, from the raw material to the final system qualification test, has been developed to fabricate a large-diameter, lightweight reflective-telescope system for a satellite observation. The telescope with 3 anastigmatic mirrors has an aperture of 700 mm and a total mass of 66 kg. We baked a silicon carbide substrate body from a carbon preform using a reaction sintering method, and tested the structural and chemical properties, surface conditions, and crystal structure of the body. We developed the polishing and coating methods considering the mechanical and chemical properties of the silicon carbide (SiC) body, and we utilized a chemical-vapor-deposition method to deposit a dense SiC thin film more than 170 ㎛ thick on the mirror's surface, to preserve a highly reflective surface with excellent optical performance. After we made the SiC mirrors, we measured the wave-front error for various optical fields by assembling and aligning three mirrors and support structures. We conducted major space-environment tests for the components and final assembly by temperature-cycling tests and vibration-shock tests, in accordance with the qualifications for the space and launch environment. We confirmed that the final telescope achieves all of the target performance criteria.

Characterization and Control of Vascellum curtisii (Berkeley)Kreisel Causing the Fairy Ring Arcs in the Golf Course in Korea (골프코스에서 페어리링의 원인이되는 Vascellum curtisii의 특징과 방계)

  • Choi, Dae-Hong;Lee, Jung-Han;Kim, Hee-Kyu
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.171-178
    • /
    • 2008
  • We have found the clusters of tiny spiny puffball-like mushrooms growing gregariously in fairy ring (arcs) rimmed by a zone of darker green grass in the golf courses. Macroscopic as well as microscopic characters were examined for the morphology of fruiting body. Exoperidium is thin and densely spiny with minute fibrillae at early stage. The connivent spines were soft and quite persistent. In age, the fibrillae scrumble away with a powdery coating, which leaves white endoperidium becoming pale brown. It's interior was white and fleshy at first, but turns into an olive-colored dust as the gleba, the spore-producing tissue, develops to maturity and loaded with olive-brown spore mass. Then, distinct apical pore developed on the endoperidium. Rudimentary subgleba(sterile base) was narrow, chambered, delineated from the gleba by a membrane in young material. These characters suggested this fungus is a Vascellum, a member of the family Lycoperdaceae. The shapes of the spores were globose, echinulate, $3{\sim}3.5{\mu}m$ in diameter, thick-walled, and olive brown. Capillitial threads were $8-9{\mu}m$ wide, mostly colorless in KOH solution and thin-walled, which designated as "paracapillitium". This is an another character that distinguishes this mushroom from Lycoperdon spp. The spines developed on exoperidium were characteristically connivent; their apices joined together in a point, leaving a space below, which gives the appearance of vault to each group of usually 5 to 6 fibrillae. Based on the above characters, this fungus is identified as Vascellum curtisii (Berkeley). The characters distinguishable this from Lycoperdon pulcherrimum, and Vascellum pretense are discussed in detail. Control trial was also attempted. Strong vertical raking(SVR) followed by applying 500x detergent solution (Spark, Aekyung Co. Seoul) resulted in excellent control over any other treatments. In this plot, fruiting body was not developed throughout the end of mushroom growing season.

Electrochemical Characterization of Anti-Corrosion Film Coated Metal Conditioner Surfaces for Tungsten CMP Applications (텅스텐 화학적-기계적 연마 공정에서 부식방지막이 증착된 금속 컨디셔너 표면의 전기화학적 특성평가)

  • Cho, Byoung-Jun;Kwon, Tae-Young;Kim, Hyuk-Min;Venkatesh, Prasanna;Park, Moon-Seok;Park, Jin-Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Chemical Mechanical Planarization (CMP) is a polishing process used in the microelectronic fabrication industries to achieve a globally planar wafer surface for the manufacturing of integrated circuits. Pad conditioning plays an important role in the CMP process to maintain a material removal rate (MRR) and its uniformity. For metal CMP process, highly acidic slurry containing strong oxidizer is being used. It would affect the conditioner surface which normally made of metal such as Nickel and its alloy. If conditioner surface is corroded, diamonds on the conditioner surface would be fallen out from the surface. Because of this phenomenon, not only life time of conditioners is decreased, but also more scratches are generated. To protect the conditioners from corrosion, thin organic film deposition on the metal surface is suggested without requiring current conditioner manufacturing process. To prepare the anti-corrosion film on metal conditioner surface, vapor SAM (self-assembled monolayer) and FC (Fluorocarbon) -CVD (SRN-504, Sorona, Korea) films were prepared on both nickel and nickel alloy surfaces. Vapor SAM method was used for SAM deposition using both Dodecanethiol (DT) and Perfluoroctyltrichloro silane (FOTS). FC films were prepared in different thickness of 10 nm, 50 nm and 100 nm on conditioner surfaces. Electrochemical analysis such as potentiodynamic polarization and impedance, and contact angle measurements were carried out to evaluate the coating characteristics. Impedance data was analyzed by an electrical equivalent circuit model. The observed contact angle is higher than 90o after thin film deposition, which confirms that the coatings deposited on the surfaces are densely packed. The results of potentiodynamic polarization and the impedance show that modified surfaces have better performance than bare metal surfaces which could be applied to increase the life time and reliability of conditioner during W CMP.

Development of Immediate Face Lifting Technology for Reducing Wrinkles by Using Film-Forming Agent (피막 형성제를 이용한 즉각 리프팅 기술 개발)

  • Jun, Ji hyun;Ko, Eun ah;Han, Sang Gun;Kang, Hakhee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.211-218
    • /
    • 2018
  • Instant face lifting cosmetics contain various film forming agents for stretching the wrinkles on the skin surface. But, most of the film-forming polymers have sticky feels. And they are easily scrubbed out when skin is rubbed on. In this study, we focused on the influence of sodium silicate that has rapid film forming effect on skin surface and immediate wrinkle reducing effect. Sodium silicate, also known as water glass or soluble glass, is a compound containing sodium oxide and silica. Sodium silicate is a white powder that is readily soluble in water, producing an alkaline solution. Sodium silicate is stable in neutral and alkaline solutions. The sodium silicate solution hardens by drying in air and rapidly forms a thin film. When the solution is applied to the skin, the fine membrane coating is formed by water evaporation and ionic bond re-formation. It also makes the strong siloxane (Si-O) bonding on the skin surface. When these fixation properties are applied to cosmetics, they can give remarkable skin tightening effect. The sodium silicate solution can provide the lifting effect by forming a film on skin at a proper concentration. But, skin irritation may be caused with too high concentration of sodium silicate. We studied a desirable range of the sodium silicate concentration and combination with other fixatives for skin care formulation that has no sticky feels and no scrubbing out phenomenon. Immediate lifting gel was developed by using sodium silicate and various thickening systems. Among of the various thickeners, aluminum magnesium silicate showed the best compatibility with sodium silicate for rapid lifting effect. This instant physical lifting gel was confirmed as a low stimulating formula by skin clinical test.

Histomorphometric study of machined titanium implants and calcium phosphate coated titanium implants (Machined 티타늄 임플란트와 calcium phosphate coated 티타늄 임플란트의 조직형태계측학적 연구)

  • Kang, Hyun-Joo;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.2
    • /
    • pp.122-127
    • /
    • 2010
  • Purpose: The objective of this study was to investigate the effects of calcium phosphate coated titanium implant surface on bone response and implant stability at early stage of healing period of 3 weeks and later healing period of 6 weeks. Material and methods: A total of 24 machined, screw-shaped implants (Dentium Co., Ltd., Seoul, Korea) which dimensions were 3.3 mm in diameter and 5.0 mm in length, were used in this research. All implants (n = 24), made of commercially pure (grade IV) titanium, were divided into 2 groups. Twelve implants (n = 12) were machined without any surface modification (control). The test implants (n = 12) were anodized and coated with thin film (150nm) of calcium phosphate by electron-beam deposition. The implants were placed on the proximal surface of the rabbit tibiae. The bone to implant contact (BIC) ratios was evaluated after 3 and 6 weeks of implant insertion. Results: The BIC percentage of calcium phosphate coated implants ($70.8{\pm}18.9%$) was significantly higher than that of machined implants ($44.1{\pm}16.5%$) 3 weeks after implant insertion (P = 0.0264). However, there was no significant difference between the groups after 6 weeks of healing (P > .05). Conclusion: The histomorphometric evaluation of implant surface revealed that; 1. After 3 weeks early healing period, bone to implant contact (BIC) percentage of calcium phosphate coated implants (70.8%) was much greater than that of surface untreated machined implants (44.1%) with P = 0.0264. 2. After 6 weeks healing period, however, BIC percentage of calcium phosphate coated implants group (79.0%) was similar to the machined only implant group (78.6%). There was no statistical difference between two groups (P = 0.8074). 3. We found the significant deference between the control group and experimental group during the early healing period of 3 weeks. But no statistical difference was found between two groups during the later of 6 weeks.

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF

Studies on the Kiln Drying Characteristics of Several Commercial Woods of Korea (국산 유용 수종재의 인공건조 특성에 관한 연구)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.8-12
    • /
    • 1974
  • 1. If one unity is given to the prongs whose ends touch each other for estimating the internal stresses occuring in it, the internal stresses which are developed in the open prongs can be evaluated by the ratio to the unity. In accordance with the above statement, an equation was derived as follows. For employing this equation, the prongs should be made as shown in Fig. I, and be measured A and B' as indicated in Fig. l. A more precise value will result as the angle (J becomes smaller. $CH=\frac{(A-B') (4W+A) (4W-A)}{2A[(2W+(A-B')][2W-(A-B')]}{\times}100%$ where A is thickness of the prong, B' is the distance between the two prongs shown in Fig. 1 and CH is the value of internal stress expressed by percentage. It precision is not required, the equation can be simplified as follows. $CH=\frac{A-B'}{A}{\times}200%$ 2. Under scheduled drying condition III the kiln, when the weight of a sample board is constant, the moisture content of the shell of a sample board in the case of a normal casehardening is lower than that of the equilibrium moisture content which is indicated by the Forest Products Laboratory, U. S. Department of Agriculture. This result is usually true, especially in a thin sample board. A thick unseasoned or reverse casehardened sample does not follow in the above statement. 3. The results in the comparison of drying rate with five different kinds of wood given in Table 1 show that the these drying rates, i.e., the quantity of water evaporated from the surface area of I centimeter square per hour, are graded by the order of their magnitude as follows. (1) Ginkgo biloba Linne (2) Diospyros Kaki Thumberg. (3) Pinus densiflora Sieb. et Zucc. (4) Larix kaempheri Sargent (5) Castanea crenata Sieb. et Zucc. It is shown, for example, that at the moisture content of 20 percent the highest value revealed by the Ginkgo biloba is in the order of 3.8 times as great as that for Castanea crenata Sieb. & Zucc. which has the lowest value. Especially below the moisture content of 26 percent, the drying rate, i.e., the function of moisture content in percentage, is represented by the linear equation. All of these linear equations are highly significant in testing the confficient of X i. e., moisture content in percentage. In the Table 2, the symbols are expressed as follows; Y is the quantity of water evaporated from the surface area of 1 centimeter square per hour, and X is the moisture content of the percentage. The drying rate is plotted against the moisture content of the percentage as in Fig. 2. 4. One hundred times the ratio(P%) of the number of samples occuring in the CH 4 class (from 76 to 100% of CH ratio) within the total number of saplmes tested to those of the total which underlie the given SR ratio is measured in Table 3. (The 9% indicated above is assumed as the danger probability in percentage). In summarizing above results, the conclusion is in Table 4. NOTE: In Table 4, the column numbers such as 1. 2 and 3 imply as follows, respectively. 1) The minimum SR ratio which does not reveal the CH 4, class is indicated as in the column 1. 2) The extent of SR ratio which is confined in the safety allowance of 30 percent is shown in the column 2. 3) The lowest limitation of SR ratio which gives the most danger probability of 100 percent is shown in column 3. In analyzing above results, it is clear that chestnut and larch easly form internal stress in comparison with persimmon and pine. However, in considering the fact that the revers, casehardening occured in fir and ginkgo, under the same drying condition with the others, it is deduced that fir and ginkgo form normal casehardening with difficulty in comparison with the other species tested. 5. All kinds of drying defects except casehardening are developed when the internal stresses are in excess of the ultimate strength of material in the case of long-lime loading. Under the drying condition at temperature of $170^{\circ}F$ and the lower humidity. the drying defects are not so severe. However, under the same conditions at $200^{\circ}F$, the lower humidity and not end coated, all sample boards develop severe drying defects. Especially the chestnut was very prone to form the drying defects such as casehardening and splitting.

  • PDF