• 제목/요약/키워드: thickness-to-chord

검색결과 66건 처리시간 0.024초

Static strength of collar-plate reinforced tubular T-joints under axial loading

  • Shao, Yong-Bo
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.323-342
    • /
    • 2016
  • To study the effect of collar-plate reinforcement on the static strength of tubular T-joints under axial loading, fundamental research work is carried out from both experimental test and finite element (FE) simulation. Through experimental tests on 7 collar-plate reinforced and 7 corresponding un-reinforced tubular T-joints under axial loading, the reinforcing efficiency is investigated. Thereafter, the static strengths of the above 14 models are analyzed by using FE method, and it is found that the numerical results agree reasonably well with the experimental data to prove the accuracy of the presented FE model. Additionally, a parametric study is conducted to analyze the effect of some geometrical parameters, i.e., the brace-to-chord diameter ratio ${\beta}$, the chord diameter-to-chord wall thickness ratio $2{\gamma}$, collar-plate thickness to chord wall thickness ratio ${\tau}_c$, and collar-plate length to brace diameter ratio $l_c/d_1$, on the static strength of a tubular T-joint. The parametric study shows that the static strength can be greatly improved by increasing the collar-plate thickness to chord wall thickness ratio ${\tau}_c$ and the collar-plate length to brace diameter ratio $l_c/d_1$. Based on the numerical results, parametric equations are obtained from curving fitting technique to estimate the static strength of a tubular T-joint with collar-plate reinforcement under axial loading, and the accuracy of these equations is also evaluated from error analysis.

Hysteretic behaviour of circular tubular T-joints with local chord reinforcement

  • Shao, Y.B.;Wang, Y.M.;Yang, D.P.
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1017-1029
    • /
    • 2016
  • When a welded circular hollow section (CHS) tubular joint is subjected to brace axial loading, failure position is located usually at the weld toe on the chord surface due to the weak flexural stiffness of the thin-walled chord. The failure mode is local yielding or buckling in most cases for a tubular joint subjected to axial load at the brace end. Especially when a cyclic axial load is applied, fracture failure at the weld toe may occur because both high stress concentration and welding residual stress along the brace/chord intersection cause the material in this region to become brittle. To improve the ductility as well as to increase the static strength, a tubular joint can be reinforced by increasing the chord thickness locally near the brace/chord intersection. Both experimental investigation and finite element analysis have been carried out to study the hysteretic behaviour of the reinforced tubular joint. In the experimental study, the hysteretic performance of two full-scale circular tubular T-joints subjected to cyclic load in the axial direction of the brace was investigated. The two specimens include a reinforced specimen by increasing the wall thickness of the chord locally at the brace/chord intersection and a corresponding un-reinforced specimen. The hysteretic loops are obtained from the measured load-displacement curves. Based on the hysteretic curves, it is found that the reinforced specimen is more ductile than the un-reinforced one because no fracture failure is observed after experiencing similar loading cycles. The area enclosed by the hysteretic curves of the reinforced specimen is much bigger, which shows that more energy can be dissipated by the reinforced specimen to indicate the advantage of the reinforcing method in resisting seismic action. Additionally, finite element analysis is carried out to study the effect of the thickness and the length of the reinforced chord segment on the hysteretic behaviour of CHS tubular T-joints. The optimized reinforcing method is recommended for design purposes.

최적 Gurney 플랩크기에 대한 익형두께의 영향 (Effect of Airfoil Thickness on the Optimum Gurney Flap Height)

  • 유능수;이장호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.568-572
    • /
    • 2000
  • A numerical investigation was performed to determine the effect of airfoil thickness on the optimum Gurney flap height using NACA 00XX series airfoils. Seven airfoils which have 3% chord thickness difference were used. These were NACA 0006, 0009, 0012, 0015, 0018, 0021, and 0024. A Navier-Stokes code, FLUENT, was used to calculate the flow field about airfoil. The fully turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. To provide a check case fur our computational method, numerical studies for NACA 4412 airfoil were made and compared with already existing experimental data for this airfoil by Wadcock. For every NACA 00XX airfoil, Gurney flap heights ranging from 0.5% to 2.0% chord were changed by 0.5% chord interval and their effects were studied. With the numerical solutions, the relationship between $(L/D)_{max}$ and airfoil thickness as a function of flap height and the relationship between $(L/D)_{max}$ and flap height as a function of airfoil thickness were investigated. The same relationship for $(C_l)_{max}$ also were shown. From these results, the optimum flap size for each airfoil thickness can be determined and vice versa.

  • PDF

각형강관 T형 접합부의 휨거동에 관한 실험 연구 (An Experimental Study on the Flexural Behavior for T-joints with Square Hollow Structural Sections)

  • 박금성;이상섭;최영환;배규웅
    • 한국강구조학회 논문집
    • /
    • 제21권3호
    • /
    • pp.211-219
    • /
    • 2009
  • 비렌딜 트러스가 면내 휨모멘트 하중을 받는 지관 정방형의 각형강관 T형 접합부의 거동을 실험적으로 조사하기 위한 것이 본 논문의 목적이다. T형 접합부에서 각형강관 주관 플랜지면의 위에 각형강관 지관이 용접으로 접합되어 있다. 주요 변수로는 주관 두께에 대한 폭의 비($2{\gamma}$)로 ${16.7{\leq}2{\gamma}{\leq}33.3}$의 범위이고, 주관 폭에 대한 지관 폭의 비인 폭비($\beta$)로 ${0.40{\leq}{\beta}{\leq}0.71}$이다. 접합부에 면내 휨모멘트 하중이 작용하도록 총 9개의 실험체를 제작하여 실험하였다. 실험결과, 각형강관 지관 정방형의 T형 접합부에 대한 면내 휨강도는 주관 폭두께비와 폭비에 관계없이 주관 플랜지 휨변형에 의해 결정됨을 알 수 있다. 또한, 지관 정방형의 각형강관 T형 접합부의 면내 휨강도는 사용성에 의해 지배되는 것으로 나타나 면내 최대 휨강도는 1%B 변형시의 휨강도($M_{1%B}$)에 1.5배로 평가할 수 있는 것을 알 수 있다. 최종적으로 지관 정방형의 각형강관 T형 접합부에 대한 면내 휨강도는 주관의 폭두께비가 작을수록, 주관 폭에 대한 지관 폭의 비인 폭비가 클수록 접합부의 휨강도는 선형으로 증가하는 것으로 나타났다.

냉간성형 각형강관 모살용접 T형 접합부의 최대내력(I) - 주관 플랜지 파괴모드 - (Ultimate Strength of Fillet-welded T-joints in Cold-formed Square Hollow Sections - Chord flange failure mode -)

  • 배규웅;박금성;강창훈;문태섭
    • 한국강구조학회 논문집
    • /
    • 제14권2호
    • /
    • pp.311-318
    • /
    • 2002
  • 본 논문은 냉간성형 각형강관 T형 접합부의 최대내력과 변형제한치에 대한 연구이다. 전회의 실험적 연구로부터, T형 접합부는 주관폭에 대한 지관폭의 비(${\beta}$) 0.8이하의 범위에서 변형의 증가와 함께 내력이 계속적으로 증가하는 양상을 나타내었다. 따라서, 일정한 변형량(주관플랜지에서의 변위)에 대응하는 하중을 T형 접합부의 최대내력으로 정의할 수 있을 것이다. 폭비(${\beta}$)와 주관 두께에 대한 폭의 비(B/T)가 주관 플랜지 파괴모드에 미치는 영향을 검토하였다. 기존의 Kato에 의해 수행된 실험을 포함한 실험결과로부터 $16.7{\leq}B/T{\leq}41.6$ 이고 $0.27{\leq}{\beta}{\leq}0.8$ 인 범위의 T형 접합부에 대하여, 최대내력을 정의를 위한 변형제한치는 주관폭의 3% 변형량(3%B)으로 제안하였다. CIDECT의 설계식 및 기존의 제안내력식과 실험결과를 비교하였고, 최종적으로 항복선이론에 근거한 내력식을 제안하였다.

풍력발전용 모형터빈에 관한 기초적연구 (A Fundamental Study on Wind Turbine Model of the Wind Power Generation)

  • 김정환;남청도;김윤해;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.1014-1019
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 00XX and 44XX airfoils. The six flaps which have 0.5% chord height difference were selected. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental result. For every NACA 00XX and 44XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is concluded that this initial approach gives an idea for the future development of the wind turbine optimum design.

  • PDF

풍력발전용 공기터빈의 최적설계에 관한 기초 연구 (A Basis Study on Optimum Design of Air Turbine for Wind Power Generation)

  • 김정환;김범석;김윤해;남청도;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권5호
    • /
    • pp.1091-1097
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 00XX and 44XX airfoils. The six flaps which have 0.5% chord height difference were selected . A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental results. For every NACA 00XX and 44XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is conclued that this initial approach gives an idea for the future development of the wind turbine optimum design.

  • PDF

풍력발전용 터빈의 최적설계에 관한 기초 연구(II) (A Basis Study on Optimum Design of Turbine for Wind Power Generation(II))

  • 김정환;김범석;김춘식;김진구;이영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.58-62
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap. height using NACA 0006, 0009, 0012, 0015, 0018, 0021 and 0024 airfoils. The six flaps which have 0.5% chord height difference were used. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental result. For every NACA 00XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is concluded that this initial approach gives a promise for the future development of wind turbine optimum design.

  • PDF

대형 Tubular K-Joint의 피로수명에 관한 연구 (A Study on the Fatigue Life of Large-Scale Tubular K-joints)

  • 임성우;장인화
    • 한국해양공학회지
    • /
    • 제22권2호
    • /
    • pp.58-64
    • /
    • 2008
  • Large-scale tests of welded tubular K-joint sunder balanced in-plane bending braces were carried out to observe the fatigue behavior of the API 2W Gr.60 steel plate produced by POSCO. Toe grinding and weld profiling were used to improve the fatigue life of a tubular K-joint. The effects of the steel grade and chord wall thickness on the fatigue life were also investigated. The present results were compared with the UK DEn design curve.

NACA 00XX 익형에 대한 Gurney 플랩의 영향 (The Effect of the Gurney Flap on NACA 00XX Airfoil)

  • 유능수
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.59-65
    • /
    • 2002
  • The objective of this study is to provide the quantitative and qualitative computational data about the aerodynamic performance of Gurney flap on NACA 00XX airfoils and to show the optimum Gurney flap height for each airfoil. The test was performed on 7 different airfoils from NACA 0006 to NACA0024, which have a 3% chord(=c) thickness interval. For every NACA 00XX airfoil, Gurney flap heights were changed by 0.5% or 0.25% chord interval from 0 to 2.0%c to study their effects. The aerodynamic characteristics of clean and Gurney flap airfoil were compared, and the influences of Gurney flap on each airfoil were compared. As a CFD (Computational Fluid Dynamics) solver, FLUENT, based on Navier-Stokes code, was used to calculate the flow field around the airfoil. The fully-turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. The test results showed that Gurney flap increased the lift coefficient much more than the drag coefficient over a certain range of the lift coefficient, so the lift-to-drag ratio, which is the important index of airfoil performance, was increased. Based on the test results, the relationship between the airfoil thickness and the optimum Gurney flap heights was suggested.

  • PDF