• Title/Summary/Keyword: thickness-shear

Search Result 1,906, Processing Time 0.025 seconds

Effect of Surface Finish on Mechanical and Electrical Properties of Sn-3.5Ag Ball Grid Array (BGA) Solder Joint with Multiple Reflow (Sn-3.5Ag BGA 패키지의 기계적·전기적 특성에 미치는 PCB표면 처리)

  • Sung, Ji-Yoon;Pyo, Sung-Eun;Koo, Ja-Myeong;Yoon, Jeong-Won;Shin, Young-Eui;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.261-266
    • /
    • 2009
  • The mechanical and electrical properties of ball grid array (BGA) solder joints were measured, consisting of Sn-3.5Ag, with organic solderability preservative (OSP)-finished Cu pads and Electroless Nickel/Immersion Gold (ENIG) surface finishes. The mechanical properties were measured by die shear test. When ENIG PCB was upper joint and OSP PCB was lower joint, the highest shear force showed at the third reflow. When OSP PCB was upper joint and ENIG PCB was lower joint, the highest shear force showed at the forth reflow. For both joints, after the die shear results reached the highest shear force, shear force decreased as a function of increasing reflow number. Electrical property of the solder joint decreased with the function of increasing reflow number. The scanning electron microscope results show that the IMC thickness at the bonding interface gets thicker while the number of reflow increases.

A unified approach to shear and torsion in reinforced concrete

  • Rahal, Khaldoun N.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.691-703
    • /
    • 2021
  • Reinforced concrete (RC) beams can be subjected to a complex combination of shear forces (V), torsional moments (T), flexural moments (M) and axial loads (N). This paper proposes a unified approach for the analysis of these elements. An existing model for the analysis of orthogonally reinforced concrete membrane elements subjected to in-plane shear and normal stresses is generalized to apply to the case of beams subjected to the complex loading. The combination of V and T can be critical. Torsion is modelled using the hollow-tube analogy. A direct equation for the calculation of the thickness of the equivalent hollow tube is proposed, and the shear stresses caused by V and T are combined using a simple approach. The development and the evaluation of the model are described. The calculations of the model are compared to experimental data from 350 beams subjected to various combinations of stress-resultants and to the calculations of the ACI and the CSA codes. The proposed model provides the most favorable results. It is also shown that it can accurately model the interaction between V and T. The proposed model provides a unified treatment of shear in beams subjected to complex stress-resultants and in thin membrane elements subjected to in-plane stresses.

New technique for repairing circular steel beams by FRP plate

  • Daouadji, Tahar Hassaine;Abderezak, Rabahi;Rabia, Benferhat
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.171-190
    • /
    • 2022
  • In this paper, the problem of interfacial stresses in steel cantilever beams strengthened with bonded composite laminates is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach, where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The original study in this paper carried out an analytical solution to estimate shear and peel-off stresses, as, interfacial stress analysis concentration under the uniformly distributed load and shear lag deformation. The theoretical prediction is compared with authors solutions from numerous researches. This phenomenon of deformation of the members, which gives probably approach on the study of interface of the reinforced structures, is called "shear lag effect". The resolution in this paper shows that the shear stress and the normal stress are significant and, are concentrated at the end of the composite plate of reinforcement, called "edge effect". A parametric study is carried out to show the effects of the variables of design and the physical properties of materials. This research is helpful for the understanding on mechanical behaviour of the interface and design of such structures.

Seismic behavior of reinforced concrete column-steel beam joints with and without reinforced concrete slab

  • Tong Li;Jinjie Men;Huan Li;Liquan Xiong
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.417-430
    • /
    • 2023
  • As the key part in the reinforced concrete column-steel beam (RCS) frame, the beam-column joints are usually subjected the axial force, shear force and bending moment under seismic actions. With the aim to study the seismic behavior of RCS joints with and without RC slab, the quasi-static cyclic tests results, including hysteretic curves, slab crack development, failure mode, strain distributions, etc. were discussed in detail. It is shown that the composite action between steel beam and RC slab can significantly enhance the initial stiffness and loading capacity, but lead to a changing of the failure mode from beam flexural failure to the joint shear failure. Based on the analysis of shear failure mechanism, the calculation formula accounting for the influence of RC slab was proposed to estimate shear strength of RCS joint. In addition, the finite element model (FEM) was developed by ABAQUS and a series of parametric analysis model with RC slab was conducted to investigate the influence of the face plates thickness, slab reinforcement diameter, beam web strength and inner concrete strength on the shear strength of joints. Finally, the proposed formula in this paper is verified by the experiment and FEM parametric analysis results.

Analysis and modeling of hyperstatic RC beam bonded by composite plate symmetrically loaded and supported

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.591-603
    • /
    • 2022
  • The flexural strengthening of reinforced concrete beams by external bonding of composite materials has proved to be an efficient and practical technique. This paper presents a study on the flexural performance of reinforced concrete continuous beams with three spans (one span and two cantilevered) strengthened by bonding carbon fiber fabric (CFRP). The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened continuous beam, i.e., the continuous concrete beam, the FRP plate and the adhesive layer. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends. Remarkable effect of shear deformations of adherends has been noted in the results. The theoretical predictions are compared with other existing solutions that shows good agreement, and It shows the effectiveness of CFRP strips in enhancing shear capacity of continuous beam. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam.

Shear Capacity of Composite Basement Walls (합성 지하벽의 전단성능)

  • 김성만;이성호;서수연;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.321-330
    • /
    • 2002
  • This paper presents the experimental results of composite basement wall in which H-pile and reinforced concrete wall are combined using shear connector Twelve specimens are tested to evaluate the shear capacity of the wall. Main variables in the test are composite ratio, distribution of shear connector, thickness of wall, shear-span ratio, and shear reinforcement. Test results indicate that the shear capacity of test specimens varies with the foregoing variables except the composite ratio. The results are compared with strengths predicted using the equations of ACI 318-99, Zsutty, and Bazant. Based on this investigation, a method for predicting the shear strength of composite basement walls is proposed.

Structural Behavior of Sandwich Panels with Polymer Concrete Facings (폴리머 콘크리트 샌드위치 패널의 구조적 거동)

  • 연규석;함형길;김관호;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.261-266
    • /
    • 1993
  • This study was performed to evaluate the flexural behavior of polymer concrete sandwich panels which was made of unsaturated polymer resin. Bending tests under 4point loading was conducted for the 8 type of sandwich panel with different core and facing thickness. Results show that Load-Deflection, shearing force- shear strain, moment strength - strain relationships were effected by core and facing thickness.

  • PDF

Development of Design Program for Composite Pressure Vessel Type-4 (복합재료 압려용기 Type-4 설계 프로그램 개발)

  • Lee Ho Yong;Joe Chee Ryong
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.224-227
    • /
    • 2004
  • A computer program for composite pressure vtlssel design is developed. In-puts are : material-property(young's modulus, shear modulus, tensile strength, poisson's ratio, density), operating pressure, burst pressure, liner thickness, boss diameter, boss weight and number of helical angles. Out-puts are; thickness of each layer, weight of the vessel, dimension of the vessel, inner volume, dome-shape and helical winding angle. Also filament winding angles can be selected various kinds of utilizing virtual boss diameter.

  • PDF

Engineering Application of Direct Shear Box Test for Slope Stability Problem (사면 안정 문제에 대한 직접 전단 시험의 공학적 적용)

  • Ikejiri, Katsutoshi;Shibuya, Satoru;Jung, Min-Su;Chae, Jong-Gil
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.65-73
    • /
    • 2008
  • In the current practice for slope stability problem in Japan, the shear strength, $\tau$, mobilized along the failure surface is usually estimated based on an empirical approximation in which the cohesion, c, is assumed to be equal to the soil thickness above the supposed slip surface, d(m). This approximation is advantageous in that the result of stability analysis is not influenced by the designers in charge. However, since the methodology has little theoretical background, the cohesion may often be grossly overestimated, and conversely the angle of shear resistance, $\phi$, is significantly underestimated, when the soil thickness above the supposed slip surface is quite large. In this paper, a case record of natural slope failure that took place in Hyogo Prefecture in 2007, is described in detail for the case in which the shear strength along the collapsed surface was carefully examined in a series of direct shear box (DSB) tests by considering the effects of in-situ shear stress along the slip surface. It is demonstrated that the factor of safety agrees with that of in-situ conditions when the shear strength from this kind of DSB test was employed for the back-analysis of the slope failure.

Dynamic response of nano-scale plates based on nonlocal elasticity theory (비국소 탄성 이론을 이용한 나노-스케일 판의 강제진동응답)

  • Kim, Jin-Kyu;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.436-444
    • /
    • 2013
  • This article presents the dynamic response of nano-scale plates using the nonlocal continuum theory and higher-order shear deformation theory. The nonlocal elasticity of Eringen has ability to capture the small scale effects and the higher-order shear deformation theory has ability to capture the quadratic variation of shear strain and consequently shear stress through the plate thickness. The solutions of transient dynamic analysis of nano-scale plate are presented using these theories to illustrate the effect of nonlocal theory on dynamic response of the nano-scale plates. The relations between nonlocal and local theories are discussed by numerical results. Also, the effects of nonlocal parameters, aspect ratio, side-to-thickness ratio, size of nano-scale plate and time step on dynamic response are investigated and discussed. The amplitude and cycle increase when nonlocal parameter increase. In order to validate the present solutions, the reference solutions are used and discussed. The theoretical development as well as numerical solutions presented herein should serve as reference for nonlocal theories as applied to the transient dynamic analysis of nano-scale structures.