• Title/Summary/Keyword: thickness-shear

Search Result 1,906, Processing Time 0.033 seconds

Numerical studies on non-shear and shear flows past a 5:1 rectangular cylinder

  • Zhou, Qiang;Cao, Shuyang;Zhou, Zhiyong
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.379-397
    • /
    • 2013
  • Large Eddy Simulations (LES) were carried out to investigate the aerodynamic characteristics of a rectangular cylinder with side ratio B/D=5 at Reynolds number Re=22,000 (based on cylinder thickness). Particular attention was devoted to the effects of velocity shear in the oncoming flow. Time-averaged and unsteady flow patterns around the cylinder were studied to enhance understanding of the effects of velocity shear. The simulation results showed that the Strouhal number has no significant variation with oncoming velocity shear, while the peak fluctuation frequency of the drag coefficient becomes identical to that of the lift coefficient with increase in velocity shear. The intermittently-reattached flow that features the aerodynamics of the 5:1 rectangular cylinder in non-shear flow becomes more stably reattached on the high-velocity side, and more stably separated on the low-velocity side. Both the mean and fluctuating drag coefficients increase slightly with increase in velocity shear. The mean and fluctuating lift and moment coefficients increase almost linearly with velocity shear. Lift force acts from the high-velocity side to the low-velocity side, which is similar to that of a circular cylinder but opposite to that of a square cylinder under the same oncoming shear flow.

A high precision shear flexible element for bending analysis of thick/thin triangular plate

  • Haldar, S.;Das, P.;Manna, M.C.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.79-90
    • /
    • 2004
  • A high precision shear deformable triangular element has been proposed for bending analysis of triangular plate. The element has twelve nodes at the three sides and four nodes inside the element. Initially the element has thirty-five degrees of freedom, which has been reduced to thirty by eliminating the degrees of freedom of the internal nodes through static condensation. Plates having different boundary conditions, side ratios (b/a) and thickness ratios (h/a = 0.001, 0.1 and 0.2) have been analyzed using the proposed shear locking free element. Concentrated and uniformly distributed transverse loads have been used for the analysis. The formulation is made based on first order shear deformation theory. For validation of the present element and formulation few results of thin triangular plate have been compared with the analytical solutions. Results for thick plate have been presented as new results.

Design Equation for Punching Shear Capacity of SFRC Slabs

  • Higashiyama, Hiroshi;Ota, Akari;Mizukoshi, Mutsumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2011
  • In this paper, a design equation for the punching shear capacity of steel fiber reinforced concrete (SFRC) slabs is proposed based on the Japan Society of Civil Engineers (JSCE) standard specifications. Addition of steel fibers into concrete improves mechanical behavior, ductility, and fatigue strength of concrete. Previous studies have demonstrated the effectiveness of fiber reinforcement in improving the shear behavior of reinforced concrete slabs. In this study, twelve SFRC slabs using hooked-ends type steel fibers are tested with varying fiber dosage, slab thickness, steel reinforcement ratio, and compressive strength. Furthermore, test data conducted by earlier researchers are involved to verify the proposed design equation. The proposed design equation addresses the fiber pull-out strength and the critical shear perimeter changed by the fiber factor. Consequently, it is confirmed that the proposed design equation can predict the punching shear capacity of SFRC slabs with an applicable accuracy.

Shear and Friction Characteristics in Down-End Milling with Different Helix Angles (하향엔드밀링시 헬릭스각에 따른 전단 및 마찰특성변화)

  • 이영문;장승일;서민교;손정우
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.17-24
    • /
    • 2004
  • In end milling process, undeformed chip thickness and cutting forces vary periodically with phase change of the tool. Recently, a model has been proposed to simulate the shear and friction characteristics of an up-end milling process in terms of the equivalent oblique cutting to this. In the current study, a down-end milling process has been replaced with the equivalent oblique cutting process. And shear and tool-chip friction characteristics variation of SM45C steel has been studied using the end-mills of different helix angles. The specific shear and friction energy consumed with helix angle of $50^{\circ}$ is somewhat larger than those of$30^{\circ}$ and $40^{\circ}$. The specific shear energy consumed is about 76-77% of the specific cutting energy regardless the helix angles.

Bearing Strength of Steel Coupling Beams-Wall Connections depending upon Joint Details (접합부 상세에 따른 철골 커플링 보-벽체 접합부의 지압강도)

  • Park Wan-Shin;Yun Hyun-Do;Han Byung-Chan;Hwang Sun-Kyung;Yang Il-Seong;Kim Sun-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.113-116
    • /
    • 2004
  • No specific guidelines are for computing the shear strength of steel coupling beam connections embedded in the reinforced concrete shear wall. In this paper, a theoretical study of the strength of hybrid coupled shear wall connections is achieved. The bearing stress at failure in the concrete below the steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the steel coupling beam section to the thickness of the hybrid coupled shear wall. To revise factor affecting shear transfer strength across connections between coupled shear walls and steel coupling beam, experimental studies are achieved. The main test variables were auxiliary details of stud bolts. In this studies, these proposed equations are shown to be in good agreement with the test results reported in the paper and with other test data in the literature.

  • PDF

Performance Evaluation of Perfobond Rib FRP Shear Connectors for Composition between FRP and Concrete (FRP-콘크리트 합성을 위한 퍼포본드 전단 연결재의 성능 평가)

  • Park, Sung-Yong;Cho, Jeong-Rae;Hwang, Hoon-Hee;Cho, Keun-Hee;Baek, Dong-Youl;Kim, Sung-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.297-300
    • /
    • 2006
  • One of main issues of the FRP-concrete composite member is shear connection between FRP and concrete in order to secure composite behavior of FRP and concrete. To solve this problem, perfobond rib FRP shear connector is introduced for the mechanical shear connection. In this study, experimental study was carried out on the perfobond rib FRP shear connectors in order to develop the effective details of perfobond rib FRP shear connectors. Pull-out test specimens were manufactured with FRP plate with holes embedded in concrete block. Main parameters considered in this study were diameter of holes, ratio of spacing between the centres of holes to the diameter of holes, and thickness of FRP plates. Test results are discussed according to above parameters compared with other empirical expressions for steel perfobond rib connector.

  • PDF

Stability and vibration analysis of composite plates using spline finite strips with higher-order shear deformation

  • Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • In the present study, a spline finite strip with higher-order shear deformation is formulated for the stability and free vibration analysis of composite plates. The analysis is conducted based on Reddy's third-order shear deformation theory, Touratier's "Sine" model, Afaq's exponential model and Cho's higher-order zigzag laminate theory. Consequently, the shear correction coefficients are not required in the analysis, and an improved accuracy for thick laminates is achieved. The numerical results, based on different shear deformation theories, are presented in comparison with the three-dimensional elasticity solutions. The effects of length-to-thickness ratio, fibre orientation, and boundary conditions on the critical buckling loads and natural frequencies are investigated through numerical examples.

Bending response of functionally graded piezoelectric plates using a two-variable shear deformation theory

  • Zenkour, Ashraf M.;Hafed, Zahra S.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.2
    • /
    • pp.115-134
    • /
    • 2020
  • This paper proposes a bending analysis for a functionally graded piezoelectric (FGP) plate through utilizing a two-variable shear deformation plate theory under simply-supported edge conditions. The number of unknown functions used in this theory is only four. The electric potential distribution is assumed to be a combination of a cosine function along the cartesian coordinate. Applying the analytical solutions of FGP plate by using Navier's approach and the principle of virtual work, the equilibrium equations are derived. The paper also discusses thoroughly the impact of applied electric voltage, plate's aspect ratio, thickness ratio and inhomogeneity parameter. Results are compared with the analytical solution obtained by classical plate theory, first-order-shear deformation theory, higher-order shear deformation plate theories and quasi-three-dimensional sinusoidal shear deformation plate theory.

Bond-slip effect in steel-concrete composite flexural members: Part 2 - Improvement of shear stud spacing in SCP

  • Lee, WonHo;Kwak, Hyo-Gyoung;Kim, Joung Rae
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.549-557
    • /
    • 2019
  • The use of shear studs usually placed in the form of mechanical shear connectors makes it possible to adopt composite steel-concrete structures in various structures, and steel-concrete plate composite (SCP) is being seriously considered for the installation of storage tanks exposed to harsh environments. However, manufacturing of SCP must be based on the application of existing design guidelines which require very close arrangement of shear studs. This means that the direct application of current design guidelines usually produces very conservative results and close arrangement of shear studs precludes pouring concrete within exterior steel faceplates. In this light, an improved guideline to determine the stud spacing should be introduced, and this paper proposes an improved ratio of the stud spacing to the thickness of steel plate on the basis of numerous parametric studies to evaluate the relative influence of the stud spacing on the stability of the SCP.

Experimental and Analytical Study of Shear Connectors for the CLT-Concrete Composite Floor System (CLT-콘크리트 합성 거동을 위한 전단 연결재 부재 실험과 해석 연구)

  • Park, A-Ron;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.65-73
    • /
    • 2019
  • This paper assesses the structural performance (force-slip response, slip modulus, and failure modes) of a CLT-concrete composite by conducting fifteen push-out test specimens. In addition, non-linear 3D finite element analysis was also developed to simulate the load-slip behavior of the CLT-concrete specimens under shear load. All 15 test specimens simulating the effect of concrete thickness, connection angle and penetration depth with four different shear connector types were built and tested to evaluate the flexural performance. Experimental results show that the maximum shear capacity for the composite action is obtained when the fixing angle is $90^{\circ}$ and the penetration depth of 95mm for SC normal screw was used to achieve ductile failure compared to other shear connectors.