• Title/Summary/Keyword: thickness-shear

Search Result 1,906, Processing Time 0.027 seconds

Mu7i-pole anisotropic Sr-ferrite sintered magnets fabricated by powder injection molding (분말사출성형으로 제조된 다극 이방성 SF-폐라이트 소결자석)

  • 조태식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.284-287
    • /
    • 2001
  • Multi-pole anisotropic Sr-fertile sintered magnets has been studied by powder injection molding under applied magnetic field. The orientation of anisotropic Sr-ferrite powders higher than 80% during injection molding is achieved at the following conditions; apparent viscosity lower then 2500 poise in 1000 sec$\^$-1/ shear rate and applied magnetic field higher then 4 kOe. For the high fluidity and strength of injection molded compact, and the effective binder removal without defects during solvent extraction and thermal debinding, the optimum multi-binder composition is paraffin wax(PW)/carnauba wax(CW)/HDPE = 50/25/25 wt%. The rate of binder removal is proportional to the mean particle size of Sr-ferrite powders whereas it is inversely proportional to the content of Sr-ferrite powders and the sample thickness. The high magnetic properties of Sr-ferrite sintered magnets are; 3.8 kG of remanent flux density, 3.4 kOe of intrinsic coercivity, and 1.2 kG of surface flux density (1-mm-thick) in the direction of applied magnetic field.

  • PDF

Design of Bumper Backbeam Center Reinforcement Bracket for IIHS Full Overlap Bumper Test (IIHS 풀 오버랩 범퍼 시험 대응 범퍼 백빔 중앙 보강재 설계)

  • Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.105-111
    • /
    • 2015
  • Since 2007, Insurance Institute of Highway Safety(IIHS) has conducted the new bumper test using bumper barrier to estimate the repair cost of impacted vehicle. In this study, for the front body FE model of a medium size passenger car analyzes were carried out to optimize the shape of backbeam center reinforcement bracket. First, overlap effect was examined with changing the overlap magnitude and spot welds were added along the backbeam center line for reducing the section shear deformation. Next, for an overlap model design parameter study was performed for the bracket. Thickness effect was examined and an inner reinforcement was added to the bracket. Also, the lower part of bracket was deleted and additionally the bracket length was extended. The results were discussed in terms of backbeam backward deflection, barrier backstop intrusion and weight. Compared with the current design, the final model showed 44.1% bracket weight reduction with 30.0% decrease of backbeam deflection.

Study on a rheology of PS/PP blends flowing in a micro channel (마이크로 채널을 흐르는 PS/PP 블렌드의 유변학적 특성에 관한 연구)

  • Son, Young-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1023-1026
    • /
    • 2010
  • In this paper, rheological property of polymer blends in a confined geometry was investigated. The shear viscosity was measured in a capillary rheometer incorporated with a specially designed piston and three slit dies having 0.1, 0.2 and 0.5 mm in thickness. It was observed that the viscosity of polymer blends does not depend on the die size when the phase of polymer blends is a sea-island structure. However, when the phase of polymer blends is a co-continuous structure, the viscosity of the blends was dependent on the die size. By additional investigations, this result is attributed to the slip phenomenon between polymer phases in the blends.

Study on compensation of thermal stresses in multilayered materials

  • Han, Jin-Woo;Kim, Jong-Yeon;Kim, Byoung-Yong;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.413-413
    • /
    • 2007
  • In recent years, flexible display devices such as liquid crystal display (LCD), organic light emitting diode (OLED), etc. have attracted considerable interest in a wide variety of applications. Polymer substrate is absolutely necessary to realize this kind of flexible display devices. Using the polymer as a substrate, there are lots of advantages including not only mechanical flexibility such as rolling and bending characteristics but also light weights, low cost and so on. In detail, thickness and weights is only one forth and one second of glass substrate, respectively. However, it needs low temperature below $150^{\circ}C$ in the fabrication process comparing to conventional deposition process. The polymer substrate is not thermally stable as much as the glass substrate so that some deformation can be occurred according to variation of temperature. In particular, performance of devices can be easily deteriorated by shrinkage of substrate when heating it. In this paper, pre-annealing and deposition of buffer layer was introduced and studied to solve previously mentioned problems of the shrinkage and followed shear stress.

  • PDF

Flexural Performance Evaluation of Semi-slim floor Composite Beams for Reduction of Story Height (층고절감을 위한 반슬림플로어 합성보의 휨성능 평가)

  • Lee, E.T.;Lee, Sang Hoon;Jang, Bo Ra
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.165-173
    • /
    • 2008
  • In order to promote the practicality of high-rise steel buildings, the development of structural system which have the better fire resistance, the changeable plan, and the quality control of construction with general composite beams is needed. In this research, new semi-slim floor which the defect of general slim floor was complemented was evaluated to investigate the concrete integration with slim-flor beam and the flexural performance. 5 simply supported semi-slim floor beam tests were performed with parameters; structural form of slab support beam, slab thickness, with or without web opening, and shear connection. Experimental results showed that all specimen s had good ductile behavior.

A Study on The Burr Minimization by The Chemical Mechanical Micro Machining(C3M) (화학 기계적 미세 가공기술에 의한 버 최소화에 관한 연구)

  • Lee, Hyeon-U;Park, Jun-Min;Jeong, Sang-Cheol;Jeong, Hae-Do;Lee, Eung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.177-184
    • /
    • 2001
  • C3M(chemical mechanical micro machining) is applied for diminishing the size of burr and fabricating the massless patterning for aluminium wafer(thickness of 1${\mu}m$). It is difficult to perform the micro size machining with the radically increased shear stress. While the miniaturization and function-orientation of parts has been needed in the many field such as electronics, optics and medicine. etc., it is not enough to satisfy the industry needs in the machining technology. In this paper feasibility test of diminishing burr and fabricating maskless pattern was experimented and analyzed. In the experiment oxide layer was farmed on the aluminium with chemical reaction by ${HNO_3}$(10wt%), then the surface was grooved with tungsten carbide tool for the different condition such as the load and fred rate. The result was compared with the conventional machining to show the improvement of C3M with SEM for burr diminish and XPS for atomic existence, AFM for more precise image.

  • PDF

Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment

  • Ebrahimi, Farzad;Habibi, Sajjad
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.69-97
    • /
    • 2017
  • In this study, nonlinear response of laminated functionally graded carbon nanotube reinforced composite (FG-CNTRC) plate under low-velocity impact based on the Eshelby-Mori-Tanaka approach in thermal conditions is studied. The governing equations are derived based on higher-order shear deformation plate theory (HSDT) under von $K\acute{a}rm\acute{a}n$ geometrical nonlinearity assumptions. The finite element method with 15 DOF at each node and Newmark's numerical integration method is applied to solve the governing equations. Four types of distributions of the uniaxially aligned reinforcement material through the thickness of the plates are considered. Material properties of the CNT and matrix are assumed to be temperature dependent. Contact force between the impactor and the laminated plate is obtained with the aid of the modified nonlinear Hertzian contact law models. In the numerical example, the effect of layup (stacking sequence) and lamination angle as well as the effect of temperature variations, distribution of CNTs, volume fraction of the CNTs, the mass and the velocity of the impactor in a constant energy level and boundary conditions on the impact response of the CNTRC laminated plates are investigated in details.

Mathematical modelling of the stability of carbon nanotube-reinforced panels

  • Sobhani Aragh, B.
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.727-740
    • /
    • 2017
  • The present paper studies the stability analysis of the continuously graded CNT-Reinforced Composite (CNTRC) panel stiffened by rings and stringers. The Stiffened Panel (SP) subjected to axial and lateral loads is reinforced by agglomerated CNTs smoothly graded through the thickness. A two-parameter Eshelby-Mori-Tanaka (EMT) model is adopted to derive the effective material moduli of the CNTRC. The stability equations of the CNRTC SP are obtained by means of the adjacent equilibrium criterion. Notwithstanding most available literature in which the stiffener effects were smeared out over the respective stiffener spacing, in the present work, the stiffeners are modeled as Euler-Bernoulli beams. The Generalized Differential Quadrature Method (GDQM) is employed to discretize the stability equations. A numerical study is performed to investigate the influences of different types of parameters involved on the critical buckling of the SP reinforced by agglomerated CNTs. The results achieved reveal that continuously distributing of CNTs adjacent to the inner and outer panel's surface results in improving the stiffness of the SP and, as a consequence, inclining the critical buckling load. Furthermore, it has been concluded that the decline rate of buckling load intensity factor owing to the increase of the panel angle is significantly more sensible for the smaller values of panel angle.

Analytical solution and experimental study of membrane penetration in triaxial test

  • Ji, Enyue;Zhu, Jungao;Chen, Shengshui;Jin, Wei
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.1027-1044
    • /
    • 2017
  • Membrane penetration is the most important factor influencing the measurement of volume change for triaxial consolidated-drained shear test for coarse-grained soil. The effective pressure p, average particle size $d_{50}$, thickness $t_m$ and elastic modulus $E_m$ of membrane, contact area between membrane and soil $A_m$ as well as the initial void ratio e are the major factors influencing membrane penetration. According to the membrane deformation model given by Kramer and Sivaneswaran, an analytical solution of the membrane penetration considering the initial void ratio is deduced using the energy conservation law. The basic equations from theory of plates and shells and the elastic mechanics are employed during the derivation. To verify the presented solution, isotropic consolidation tests of a coarse-grained soil are performed by using the method of embedding different diameter of iron rods in the triaxial samples, and volume changes due to membrane penetration are obtained. The predictions from presented solution and previous analytical solutions are compared with the test results. It is found that the prediction from presented analytical solution agrees well with the test results.

Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.649-661
    • /
    • 2017
  • This paper is motivated by the lack of studies in the technical literature concerning to the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) plate has smooth variation of CNT fraction based on the power-law distribution in the thickness direction, and the material properties are also estimated by the extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Parametric studies are carried out to highlight the influence of CNTs volume fraction, waviness and aspect ratio, boundary conditions and elastic foundation on vibrational behavior of FG-CNT thick sectorial plates. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. For an overall comprehension on 3-D vibration of annular sector plates, some mode shape contour plots are reported in this research work.