• Title/Summary/Keyword: thickness-shear

Search Result 1,906, Processing Time 0.026 seconds

Fatigue Life Prediction for Resistance Spot Weldment of Aluminum Alloy Sheet (알루미늄 합금판 저항 점용접부의 피로수명 예측)

  • 장건익;안병국;김동건
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.116-124
    • /
    • 2002
  • The fatigue life is predicted on tensile-shear spot weldment made from Al-Mg alloy sheet with thickness of 0.8mm using Mitchell's method and uniform material law by $B{\ddot{a}}umel$ and Seeger based on local strain approach. The fatigue properties of critical HAZ region are estimated from the tensile property using simple hardness method. To predict the fatigue life of spot weldment, the local stresses and strains at the potential critical region are estimated by Neuber's rule. The predicted fatigue life based on uniform material law using HAZ's material properties provides good results within a factor of 3, conservatively.

Development of Deformation Texture in Aluminum Sheets during Asymmetrical Rolling with a Roll Speed Ratio of 1.5/l.0 (롤속도 비 1.5/l.0 비대칭 압연 시 알루미늄 판재에서 변형집합조직의 형성)

  • 지영규;정효태;허무영
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.244-250
    • /
    • 2003
  • Sheets of aluminum alloy 1100 were asymmetrically cold rolled in a rolling mill with different roll speeds. In order to promote the shear deformation during asymmetrical rolling, cold rolling without lubrication was performed with a roll speed ratio of 1.5/l.0. The evolution of texture components during asymmetrical rolling was investigated by the calculation of the orientation distribution function (ODF) using the monoclinic sample symmetry. The strain state during asymmetrical rolling was tackled by means of FEM calculations. Asymmetrical rolling gave rise to the development of pronounced strain gradients throughout the thickness layers which resulted in the formation of strong texture gradients in the aluminum sheet.

MICRO HOLE FABRICATION BY MECHANICAL PUNCHING PROCESS

  • Joo B. Y.;Rhim S. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.179-188
    • /
    • 2003
  • The objective of our study is to investigate the micro fabric ability by conventional metal forming processes. In the present investigation, micro hole punching was studied. We tried to control punching process at the micro level and scaled down the standard blanking condition for $25{\mu}m$ hole fabrication. To accommodate this, tungsten carbide tooling sets and micro punching press were carefully designed and assembled meeting accuracy requirements for $25{\mu}m$ hole punching. With our developments, 100, 50, and $25{\mu}m$ holes were successfully made on metal foils such as brass and stainless steel of 100, 50, and $25{\mu}m$ in thickness, respectively, and hole sizes and shapes were measured and analyzed to investigate fabrication accuracy. Shear behavior during micro punching was also discussed. Our study showed that the conventional punching process could produce high quality holes down to $25{\mu}m$.

  • PDF

Buckling Analysis of New Construction Material(GFRP) (건설신소재(섬유보강 플라스틱관 : GFRP)의 좌굴해석에 관한 연구)

  • 조병완;조태준
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.133-140
    • /
    • 1995
  • The buckling analysis of Glass Fiber Reinforced Plastic pipes was studied through a three dimentsional finite element method. In the finite element analysis, an improved degenerated shell element with incompatible modes and assumed shear strain fields are employed with 3 displacements and 2 rotations for each joints. Buckling analysis is carried out for various thicknesses and different fiber orientations. Finite element results show that the buckling load increases as the thickness does with the variation of coupling stiffness.

  • PDF

The Spinnability of Multi-step Cylindrical Cup in Spinning Process (스피닝 공정을 이용한 다단 원형 컵 형상의 성형성에 관한 연구)

  • 박중언;한창수;최석우;김승수;나경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1016-1020
    • /
    • 2001
  • The spinning is a very effective manufacturing technology for short production runs in a variety of sizes and shapes, because it can form the cross-section or tubular parts various shapes. However extensive experimental and analytical research has not been carried out. In this study, and fundamental experiment was conducted to improve productivity with process parameter such as tool path, angle of roller holder(a), feed rate(v) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to have and effect on spring back. The clearance was controlled in order to achieve the precision product which is comparable to deep drawing one. And also thickness and diameter distribution of a multistage cup obtained by shear spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

Consideration of FEM Analysis and Effect of Structure in Fault Rock (단층의 해석상의 고려사항과 암반구조물에 미치는 영향)

  • Ahn, Sung-Youll
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.160-169
    • /
    • 2007
  • In this study, Analyzed stress history, state of stress, ratio of stress/strength to use FEM. Fault Zone depth is 3m, 6m, 9m, 12m and 15m for study, and also Distance is 3m, 6m, 9m, 12m and 15m at center of tunnel with thickness 3m fault zone. It is not appeared that Arching in stress state and stress history by FEM. On the other hand, excessive shear stress and high compressive stress happened. Therefore, Tunnel design is desirable that do it so that state of stress that is the imbalance may be uplemented. it is important that examine each state of stress and stress history in detail tunnel design.

  • PDF

Dielectric and Piezoelectric Properties of $(Pb, Nd)(Ti, Mn)O_3$ Ceramics ($(Pb, Nd)(Ti, Mn)O_3$ 세라믹의 유전 및 압전특성)

  • 임주수;신혁재;오태희;김종희;송병무;이재신
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.461-466
    • /
    • 1997
  • Dielectric and piezoelectric properties of (Pb1-1.5xLnx)(Ti0.98Mn0.02)O3 ceramics with x=0~0.2 have been investigated. Pb(Ti0.98Mn0.02)O3 showed poor sinterability and cracking on cooling, but the substitution of Nd3+ ions into Pb2+ sites resulted in dense microstructures without cracking through reducing crystallographic anisotropy. The Nd3+ substitution, however, deteriorated the temperature stability of the piezoelectric properties because of lowering the Curie point. Electromechanical anisotropy(Kt/Kp) indicated a maximum value of 10 when x=0.1. This result might be attributed to the counteracting effects that with increasing x, the lattice anisotropy decreases while the poling becomes easier due to the increase in O2- vacancy concentration. Thickness-shear mode resonators with (Pb0.85Nd0.1)(Ti0.98Mn0.02)O3 composition showed good resonant characteristics around 4.5 MHz.

  • PDF

Fatigue Failure of RC Decks in Highway Bridges (도로교 RC 바닥판의 피로파괴에 관한 연구)

  • 권혁문
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.3
    • /
    • pp.116-124
    • /
    • 1993
  • 지간 2m인 RC바닥판을 모델로 하여 송정등이 연구한 실험결과를 기초로 피로파괴 가능성에 대하여 규명하였다. 같은 Md/Udptj 콘크리트 강도 240kg/$ extrm{cm}^2$이 210kg/$\textrm{cm}^2$보다 피로파괴 수명이 길게 나타나고, 유효높이 14,15cm는 Md/U를 크게 하여도 피로파괴수명에는 큰 증가가 없는 것으로 나타나고 있다. 같은 조건에서 92년판 시방서에 의해 설계한 단면이 85년판 시방서에 의해 설계한 것보다 피로파괴수명이 약 50% 증가된 것으로 나타나고 있으나, 양 시방서에 의해 설계된 단면 모두 펀칭전단 피로파괴가 일어날 수 있으므로 바닥판의 최소두께를 조정해야 할 필요가 있다.

Prediction Methodology for Reliability of Semiconductor Packages

  • Kim, Jin-Young
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.79-94
    • /
    • 2002
  • Root cause -Thermal expansion coefficient mismatch -Tape warpage -Initial die crack (die roughness) Guideline for failure prevention -Optimized tape/Substrate design for minimizing the warpage -Fine surface of die backside Root cause -Thermal expansion coefficient mismatch - Repetitive bending of a signal trace during TC cycle - Solder mask damage Guideline for failure prevention - Increase of trace width - Don't make signal trace passing the die edge - Proper material selection with thick substrate core Root cause -Thermal expansion coefficient mismatch -Creep deformation of solder joint(shear/normal) -Material degradation Guideline for failure Prevention -Increase of solder ball size -Proper selection of the PCB/Substrate thickness -Optimal design of the ball array -Solder mask opening type : NSMD -In some case, LGA type is better

  • PDF

Development of a CAD program for optimal design of a cylinderical die with one stress-ring (단일보강링 원통형 금형의 최적 설계용 CAD 프로그램 개발)

  • 신중호;손주리;류갑상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.556-561
    • /
    • 1988
  • Shrink-rings (Stress-rings) are used in the fabrication of dies for cold forming and powder compaction processes to increase the allowable pressures for a given die material. Optimum procedures are to minimize a die thickness under the conditions that the stress distributions in the die and stress-rings utilize fully the strength available in each of the die elements. This paper proposes a new approach, where the maximum allowable shrinking pressures are calculated on shrinkage plans in the radial direction and the fractional shrinking pressures below the maximum allowable pressures are used as the design values. Two criteria for the optimal die design are used: Maximum shear stress limit for one-piece dies and zero tensile stress limit for combined dies. A computer program, DIECOM, is developed for illustrating the computer-aided design procedures. Finally, examples for each case are presented in this paper.

  • PDF