• Title/Summary/Keyword: thickness-shear

Search Result 1,906, Processing Time 0.027 seconds

changers of Mechanical Properties of Wool Woresed fabrics with fusible Interlingings(Part II) (모직물의 접착심 접착에 의한 물성의 변화 (제2보))

  • 지주원;유효선;이대훈
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.1
    • /
    • pp.22-29
    • /
    • 1999
  • This paper descrived the changes of peel strength wrinkle recovery and dimensional stability after fusing 4 different wool face fabrics with 3 different fusible interlinings. The fusing condition was conducted by fusing press machine under 4kg.f/cm2 at 15$0^{\circ}C$. To determine the effect of the varous physical properties of the fused fabrics face fabrics and interlinings on the peel strength wrinkle recovery and dimensional stability(hygral expansion and relaxation shrinkage) of fused fabrics correlation among the KES values of fused fabrics face fabrics and interlinings to the peel strength rinkle recovery and dimensional stability of fused fabrics were expeerimentally analyzed,. As the results the peel strength was mainly influenced by the cover factor of face fabric and interlinings. After fusing wrinkle recovery and hygral expansion were decreased. The cover factor wrinkle recovery weight thickness shear rigidity and frictional properties of face fabric and the thickness of fused fabrics were not influence to the wrinkle recovery of fused fabrics. In addition the dimensional stabilities of fused fabrics were mainly influenced by the tensile and frictional properties of the wrinkle recovery of fused fabrics. In addition the dimensional stabilities of fused fabrics were mainly influenced by the tensile and frictional properties of the face fabrics.

  • PDF

A Statistical Study of Effective Properties due to Fiber Tow Misalignment and Thickness Change for Plain Weave Textile Composites (섬유다발 배열 및 적층수에 따른 평직복합재료 등가물성치의 변화에 관한 통계적 연구)

  • 우경식;서영욱
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.63-72
    • /
    • 2000
  • In this paper, statistical treatments of effective properties for plain weave textile composites were presented. Configurations up to 32 layers with varied stacking phase shifts were considered. Effective properties were calculated by numerical simulation in which uni-axial tensile and shear load were applied at unit cell. Sample analysis was utilized to consider the inherent randomness in the phase shift and the results were treated statistically. It was found that effective properties were dependent on stacking phase shifts for thin plain weave textile composites. The distribution of $E_{xx}$ and $V_{xy}$ were skewed and the range of possible values was relatively large. As the number of layers increased, however, the distribution width became narrower and mean values converged. In contrast, $G_{xy}$ was not affected by phase shifts and thickness changes.

  • PDF

Using fourth order element for free vibration parametric analysis of thick plates resting on elastic foundation

  • Ozdemir, Y.I.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.213-222
    • /
    • 2018
  • The purpose of this paper is to study free vibration analysis of thick plates resting on Winkler foundation using Mindlin's theory with shear locking free fourth order finite element, to determine the effects of the thickness/span ratio, the aspect ratio, subgrade reaction modulus and the boundary conditions on the frequency paramerets of thick plates subjected to free vibration. In the analysis, finite element method is used for spatial integration. Finite element formulation of the equations of the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates free, clamped or simply supported along all four edges. In the analysis, 17-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 17-noded finite element can be effectively used in the free vibration analysis of thick plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio.

Control of Turbulent Recirculating Flow by Local Forcing (국소교란에 의한 난류 재순환유동의 제어)

  • 전경빈;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.446-455
    • /
    • 1994
  • An experimental study is conducted for the turbulent recirculating flow behind a backward-facing step when the oscillating jet is issued sinusoidally through a thin slit at the separation edge. Two key parameters are dealt with in the present experiment, i.e., the amplitude of forcing and the forcing frequency. The Reynolds number based on the step height is varied from 25,000 to 35,000. In order to investigate the effect of local forcing, turbulent structures are scrutinized for both the flow of forcing and the flow of no forcing. The growth of shear layer with a local forcing is larger than that of no forcing. The influence of a local forcing brings forth the decrease of reattachment length and the particular frequency gives a minimum reattachment length. The most effective frequency depends on the non-dimensional frequency, St/sub .theta./, based on the momentum thickness at the separation point. A comparative study leads to the conclusion that the large-scale vortical structure is strongly associated with the forcing frequency and the natural flow instability.

The Design Simulation for Manufacture of High Frequence Ceramic Filter (고주파용 세라믹 필터의 제작을 위한 디자인 해석)

  • Lee, S.H.;Seok, J.Y.;Ryu, G.H.;SaGong, G.;Yoon, K.H.;Yoo, J.H.;Park, C.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.418-421
    • /
    • 2001
  • The ceramic filters were developed using technology similar to that of quartz crystal and electromechanical filter. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emhpasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations. Nakazawa developed a double-mode resonator as two acoustically coupled single resonators. And he developed 10.7MHz crystal filters using multi-energy trapping mode of thickness shear vibration. He succeeded in realizing a two-pole band pass filter response without external inductance by splitting a dot electrode to creat coupled symmetric and antisymmetric vibration modes. Accordingly, the simulation for ceramic filter were important. So that, this paper were investigated the pass frequency of filter on the electrode length and thickness of ceramic.

  • PDF

Stress analysis of large ground-supported cylindrical storage tanks (地盤支持된 大形圓筒탱크의 應力解析)

  • 김동현;차홍석;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.976-981
    • /
    • 1986
  • The Stress analysis based on the large deflection theory of plate for the large cylindrical storage tank is performed by considering the change of membrane force for the various parameter, i.e., thickness ratio, tank height to diameter ratio, and stretched length. The critical buckling force of cylindrical shell is obtained to investigate the safety of tank shell. By numerical result, the thickness ratio is the important parameter for the membrane force, the height of tank is related linearly with the force, and the stretched length of bottom plate is little influenced. Also, the critical buckling force of cylindrical shell is large than the edge shear force at bottom-shell junction, and hence the consideration of the shell buckling is not required.

Study of WMA Additive's Compaction Characteristics in Terms of Temperature Change by Using DSR (DSR을 이용한 온도변화에 따른 중온화 첨가제의 다짐특성 연구)

  • Hwang, Sung-Do;Lee, Sang Jae;Cho, Dong-Woo;Rhee, Suk Keun
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2013
  • PURPOSES : This study is to develop a method to evaluate the compaction effects of asphalt binders using WMA additives and compare their compaction effects on two types of WMA additives, two types of testing temperatures, and three types of asphalt film thicknesses. METHODS : This study is based on laboratory experiments and rheological analysis of the experimental results. Testing materials are aggregate disks, asphalt, and WMA additives. The main testing method is the stress sweep test by using dynamic shear rheometer (DSR). In addition, the testing parameters obtained from the stress sweep results to evaluate lubrication effects are complex modulus and LVE-Limit. RESULTS : At both the first compaction condition ($110^{\circ}C$, 0.3mm) and second compaction condition ($80^{\circ}C$, 0.2mm) assumed, LEADCAP showed better compaction effects than Sasobit. CONCLUSIONS : The temperature $30^{\circ}C$ lower than general compaction temperatures can provide a better sensitivity for the evaluation of compaction effects. If a testing temperature and film thickness are grouped for the proper compaction conditions in the testing results, the compaction performance of each WMA additive can be more clearly discriminated in the grouped testing results matched with the grouped conditions.

Structural Behaviour of Beam-to-Concrete Filled Steel Tube Column Pin Connections (콘크리트충전 각형강관기둥-보 핀접합부의 거동에 관한 실험적 연구)

  • Kim, Cheol-Hwan;Lee, Eun-Taik;Kim, Seong-Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.437-443
    • /
    • 2000
  • In order to clarify the behavior of beam-to-concrete filled steel tube column under cyclic loading condition, experimental studies were carried out on shear connections. Test parameters of this study are the width-to-thickness ratio and the effect on beams with or without slab and diaphragm. Test results show that the moment-rotation relationships of connections without slab are in the range of AISC regulation of pinned connections and the rotation capacity of connection is dependent upon the width-to-thickness ratio of the column.

  • PDF

Fatigue Strength Evaluation on the IB-Type Spot-welded Lap Joint of 304 Stainless Steel Part 1 : Maximum Principal Stress (304 스테인리스 박강판 IB형 점용접이음재의 피로강도 평가 Part 1 : 최대 주응력에 의한 평가)

  • 손일선;오세빈;배동호
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.25-31
    • /
    • 1999
  • Stainless steel sheets are commonly used for vehicles such as the bus and the train. These are mainly fabricated by spot-welding. By the way, its fatigue strength is lower than base metal due to high stress concentration at the nugget. edge of the spot-welding. By the way, its fatigue strength is lower than base metal due to high stress concentration at the nugget edge of the spot-welding point. Especially, it is influenced by welding conditions as well as geometrical factors of spot welded joint. Therefore, it is not too much to say that structural rigidity and strength of spot-welded structures is decided by fatigue strength of spot welded lap joint. Thus, it is necessary to establish a reasonable and systematic long life design criterion for the spot-welded structure. In this study, numerical stress analysis was performed by using 3-dimensional finite element model on IB-type spot-welded lap joint of 304 stainless steel sheet under tension-shear load. Fatigue tests were also conducted on them having various thickness, joint angle, lapped length, and width of the plate. From the results, it was found that fatigue strength of IB-type spot-welded lap joints was influenced by its geometrical factors, however, could be systematically rearranged by maximum principal stress ({TEX}$σ_{1max}${/TEX}) at the nugget edge of the spot-welding point.

  • PDF

Improvement in engineering properties of subgrade soil due to stabilization and its effect on pavement response

  • Nagrale, Prashant P.;Patil, Atulya P.
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.257-267
    • /
    • 2017
  • This paper presents laboratory investigation of stabilization of subgrade soil. One type of soil and three types of stabilizers i.e., hydrated lime, class F fly ash and polypropylene fibres are selected in the study. Atterberg limit, compaction, california bearing ratio (CBR), unconfined compressive strength and triaxial shear strength tests are conducted on unstabilized and stabilized soil for varying percentage of stabilizers to analyze the effect of stabilizers on the properties of soil. Vertical compressive strains at the top of unstabilized and stabilized subgrade soil were found out by elasto-plastic finite element analysis using commercial software ANSYS. Strategy for design of optimum pavement section was based on extension in service life (TBR) and reduction in layer thickness (LTR). Extension in service life of stabilized subgrade soil is 6.49, 4.37 and 3.26 times more due to lime, fly ash and fibre stabilization respectively. For a given service life of the pavement, there is considerable reduction in layer thicknesses due to stabilization. It helps in reduction in construction cost of pavement and saving in natural resources as well.