• 제목/요약/키워드: thickness-shear

Search Result 1,906, Processing Time 0.03 seconds

Analytical model for hybrid RC frame-steel wall systems

  • Mo, Y.L.;Perng, S.F.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.127-139
    • /
    • 2003
  • Reinforced concrete buildings with shearwalls are very efficient to resist earthquake disturbances. In general, reinforced concrete frames are governed by flexure and shearwalls are governed by shear. If a structure included both frames and shearwalls, it is generally governed by shearwalls. However, the ductility of ordinary reinforced concrete is very limited. To improve the ductility, a series of tests on framed shearwalls made of corrugated steel was performed previously and the experimental results were compared with ordinary reinforced concrete frames and shearwalls. It was found that ductility of framed shearwalls could be greatly improved if the thickness of the corrugated steel wall is appropriate to the surrounding reinforced concrete frame. In this paper, an analytical model is developed to predict the horizontal load-displacement relationship of hybrid reinforced concrete frame-steel wall systems according to the analogy of truss models. This analytical model is based on equilibrium and compatibility conditions as well as constitutive laws of corrugated steel. The analytical predictions are compared with the results of tests reported in the previous paper. It is found that proposed analytical model can predict the test results with acceptable accuracy.

Curved Beam Theory Based On Centroid-Shear Center Formulation (도심-전단중심 정식화를 이용한 개선된 곡선보이론)

  • Kim Nam-Il;Kyung Yong-Soo;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1033-1039
    • /
    • 2006
  • To overcome the drawback of currently available curved beam theories having non-symmetric thin-walled cross sections, a curved beam theory based on centroid-shear center formulation is presented for the spatially coupled free vibration and elastic analyses. For this, the elastic strain and kinetic energies considering the thickness-curvature effect and the rotary inertia of curved beam are derived by degenerating the energies of the elastic continuum to those of curved beam. And then the equilibrium equations and the boundary conditions are consistently derived for curved beams having non-symmetric thin-walled cross section. It is emphasized that for curved beams with L- or T-shaped sections, this thin-walled curved beam theory can be easily reduced to tl1e solid beam theory by simply putting the sectional properties associated with warping to zero. In order to illustrate the validity and the accuracy of this study, FE solutions using the Hermitian curved beam elements are presented and compared with the results by previous research and ABAQUS's shell elements.

  • PDF

Effects of Kurtosis on the Flow Factors Using Average Flow Model (Average Flow Model을 이용한 Kurtosis에 따른 Flow Factors에 관한 연구)

  • 강민호;김태완;구영필;조용주
    • Tribology and Lubricants
    • /
    • v.17 no.3
    • /
    • pp.236-243
    • /
    • 2001
  • In this study, flow factors are evaluated in terms of kurtosis using random rough surface generated numerically. As h/$\sigma$become large ø$\sub$x/, ø$\sub$y/, ø$\sub$fp/, approach to 1 and ø$\sub$s/, ø$\sub$fs/ to 0 asymptotically regardless of kurtosis. ø$\sub$x/, ø$\sub$y/, ø$\sub$fp/ increase with increasing kurtosis in the mixed lubrication regime. ø$\sub$s/, ø$\sub$fs/ is associated with an additional flow transport due to the combined effect of sliding and roughness. As h/$\sigma$ decreases ø$\sub$s/, ø$\sub$fs/ increase up to a certain point, and then decrease toward zero. This behavior can be attributed to the increasing number of contacts in the mixed lubrication regime. ø$\sub$x/ in the presence of elastic deformation on the surface is larger than ø$\sub$x/ in the absence of it because local film thickness(h$\sub$T/) increases by elastic deformation.

Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation

  • Barka, Merbouha;Benrahou, Kouider Halim;Bakora, Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.91-112
    • /
    • 2016
  • In this paper, post-buckling behavior of sandwich plates with functionally graded (FG) face sheets under uniform temperature rise loading is examined based on both sinusoidal shear deformation theory and stress function. It is supposed that the sandwich plate is in contact with an elastic foundation during deformation, which acts in both compression and tension. Thermo-elastic non-homogeneous properties of FG layers change smoothly by the variation of power law within the thickness, and temperature dependency of material constituents is considered in the formulation. In the present development, Von Karman nonlinearity and initial geometrical imperfection of sandwich plate are also taken into account. By employing Galerkin method, analytical solutions of thermal buckling and post-buckling equilibrium paths for simply supported plates are determined. Numerical examples presented in the present study discuss the effects of gradient index, sandwich plate geometry, geometrical imperfection, temperature dependency, and the elastic foundation parameters.

On the size-dependent behavior of functionally graded micro-beams with porosities

  • Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.527-541
    • /
    • 2017
  • In this work, a new hyperbolic shear deformation beam theory is proposed based on a modified couple stress theory (MCST) to investigate the bending and free vibration responses of functionally graded (FG) micro beam made of porous material. This non-classical micro-beam model introduces the material length scale coefficient which can capture the size influence. The non-classical beam model reduces to the classical beam model when the material length scale coefficient is set to zero. The mechanical material properties of the FG micro-beam are assumed to vary in the thickness direction and are estimated through the classical rule of mixture which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. Effects of several important parameters such as power-law exponents, porosity distributions, porosity volume fractions, the material length scale parameter and slenderness ratios on bending and dynamic responses of FG micro-beams are investigated and discussed in detail. It is concluded that these effects play significant role in the mechanical behavior of porous FG micro-beams.

Characteristics of Near Wake Behind a Circular Cylinder with Serrated Fins (III) - Mechanism of Velocity Recovery - (톱니형 휜이 부착된 원주의 근접후류특성 연구 (III) - 속도회복 메카니즘에 관하여 -)

  • Ryu, Byong-Nam;Kim, Kyung-Chun;Boo, Jung-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.347-356
    • /
    • 2003
  • The characteristics of near wakes of circular cylinders with serrated fins are investigated experimentally using a hot-wire anemometer for various freestream velocities. Near wake structures of the fin tubes are observed using a phase average technique. With increasing fin height and decreasing fin pitch. oscillation of streamwise velocity increases. It file oscillation of lateral velocity decreases. The time averaged V-component velocity distribution of the finned tube is contrary to that of the circular cylinder due to the different strength of entrainment flow. This strength is affected by the distance of (equation omitted) = 1.0 contour lines. (equation omitted) = 1.0 contour line approaches to the wake center line when the fin density is increased. When the distance between (equation omitted) = 1.0 contour lines comes close the shear force should be increased and the flow toward the wake center line can be more strengthened because of the shear force. Factors related to the velocity recovery in the near wake of the finned tube are attributed to tile turbulent intensity, the boundary layer thickness. the position and strength of entrainment process.

Stability and Vibration of Non-Uniform Timoshenko Beams resting on Two-Parameter Elastic Foundations (두 파라메타 탄성기초위에 놓인 불균일 Timoshenko보의 안정성과 진동)

  • Lee, Jong-Won;Ryu, Bong-Jo;Lee, Gyu-Seop;Kong, Yong-Sik;Oh, Bu-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.596-601
    • /
    • 2000
  • The paper presents free vibration and stability analyses of a non-uniform Timoshenko beam resting on a two-parameter elastic soil. The soil parameters can vary along the spat and is assumed to be two-parameter model including the effects of both transverse shear deformation and elastic foundation Governing equations related to the vibration and the stability of the beam are derived from Hamilton's principle, and the resulting eigen-value problems can be solved to give natural frequencies and critical force by finite element method. Numerical results for both vibration and stability of beams under an axial force are presented and compared with other available solutions. Finally, vibration frequencies, mode shapes and critical forces are investigated for various thickness ratios, shear foundation parameter, Winkler foundation parameter and boundary conditions of tapered Timoshenko beams.

  • PDF

Chip Forming Characteristics of Bi-S Free Machining Steel (Bi-S 쾌삭강의 칩생성특성)

  • 이영문
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.351-356
    • /
    • 1999
  • In this study, the characteristics of chip formation of the cold drawn Bi-S free machining steels were assessed. And for comparison, those of the cold drawn Pb-S free machining steel, the hot rolled low carbon steel which has MnS as free machining inclusions and the conventional steels were also investigated. During chip formation, the cold drawn free machining steels show relatively little change in thickness and width of chip compare to those of the conventional carbon steels. And a single parameter which indicates the degree of deformation during chip formation, 'chip cross-section area ratio' is introduced. The chip cross-section area. The variational patterns of cross-section area is divided by undeformed chip cross-section area. The variational patterns of the chip cross-section area ratio of the materials cut are similar to those of the shear strain values. The shear stress, however, seems to be dependent on the carbon content of the materials. The cold drawn BiS and Pb-S steels show nearly the same chip forming behaviors and the energy consumed during chip formation is almost same. A low carbon steel without free machining aids shows poor chip breakability due to its high ductility. By introducing a small amount of non-metallic inclusions such as MnS, Bi, Pb or merely increasing carbon content the chip breakability improves significantly.

  • PDF

Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory under variable temperature loading

  • Sahoo, Brundaban;Sahoo, Bamadev;Sharma, Nitin;Mehar, Kulmani;Panda, Subrata Kumar
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.641-656
    • /
    • 2020
  • The finite element solutions of thermal buckling load values of the graded sandwich curved shell structure are reported in this research using a higher-order kinematic model including the shear deformation effect. The numerical buckling temperature has been computed using an in-house specialized code (MATLAB environment) prepared in the framework of the current mathematical formulation. In addition, the mathematical model includes the excess structural distortion under the influence of elevated environment via Green-Lagrange nonlinear strain. The corresponding eigenvalue equation has been solved to predict the critical buckling temperature of the graded sandwich structure. The numerical stability and the accuracy of the current solution have been confirmed by comparing with the available published results. Thereafter, the model is extended to bring out the influences of structural parameters i.e. the curvature ratio, core-face thickness ratio, support conditions, power-law indices and sandwich types on the thermal buckling behavior of graded sandwich curved shell panels.

Transient Response of Functionally Graded Piezoelectric Ceramic with Crack (균열이 있는 기능경사 압전 세라믹의 충격 특성에 관한 연구)

  • Jeong Woo Shin;Tae-Uk Kim;Sung Chan Kim
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.21-27
    • /
    • 2003
  • Using the theory of linear piezoelectricity, the dynamic response of a central crack in a functionally graded piezoelectric ceramic under anti-plane shear impact is analyzed. We assume that the properties of the functionally graded piezoelectric material vary continuously along the thickness. By using the Laplace and Fourier transform, the problem is reduced to two pairs of dual integral equations and then into Fredholm integral equations of the second kind. Numerical values on the dynamic stress intensity factors are presented to show the dependence of the gradient of material properties and electric loading.