• Title/Summary/Keyword: thickness stretching effect

Search Result 74, Processing Time 0.02 seconds

A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates

  • Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.223-240
    • /
    • 2015
  • In this work, a nonlocal quasi-3D trigonometric plate theory for micro/nanoscale plates is proposed. In order to introduce the size influences, the Eringen's nonlocal elasticity theory is utilized. In addition, the theory considers both shear deformation and thickness stretching effects by a trigonometric variation of all displacements within the thickness, and respects the stress-free boundary conditions on the top and bottom surfaces of the plate without considering the shear correction factor. The advantage of this theory is that, in addition to considering the small scale and thickness stretching effects (${\varepsilon}_z{\neq}0$), the displacement field is modelled with only 5 unknowns as the first order shear deformation theory (FSDT). Analytical solutions for vibration of simply supported micro/nanoscale plates are illustrated, and the computed results are compared with the available solutions in the literature and finite element model using ABAQUS software package. The influences of the nonlocal parameter, shear deformation and thickness stretching on the vibration behaviors of the micro/nanoscale plates are examined.

A new higher order shear and normal deformation theory for functionally graded beams

  • Meradjah, Mustapha;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.793-809
    • /
    • 2015
  • In this scientific work, constructing of a novel shear deformation beam model including the stretching effect is of concern for flexural and free vibration responses of functionally graded beams. The particularity of this model is that, in addition to considering the transverse shear deformation and the stretching effect, the zero transverse shear stress condition on the beam surface is assured without introducing the shear correction parameter. By employing the Hamilton's principle together with the concept of the neutral axe's position for such beams, the equations of motion are obtained. Some examples are performed to demonstrate the effects of changing gradients, thickness stretching, and thickness to length ratios on the bending and vibration of functionally graded beams.

Elastic wave phenomenon of nanobeams including thickness stretching effect

  • Eyvazian, Arameh;Zhang, Chunwei;Musharavati, Farayi;Khan, Afrasyab;Mohamed, Abdeliazim Mustafa
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.271-280
    • /
    • 2021
  • The present work deals with an investigation on longitudinal wave propagation in nanobeams made of graphene sheets, for the first time. The nanobeam is modelled via a higher-order shear deformation theory accounts for both higher-order and thickness stretching terms. The general nonlocal strain gradient theory including nonlocality and strain gradient characteristics of size-dependency in order is used to examine the small-scale effects. This model has three-small scale coefficients in which two of them are for nonlocality and one of them applied for gradient effects. Hamilton supposition is applied to obtain the governing motion equation which is solved using a harmonic solution procedure. It is indicated that the longitudinal wave characteristics of the nanobeams are significantly influenced by the nonlocal parameters and strain gradient parameter. It is shown that higher nonlocal parameter is more efficient than lower nonlocal parameter to change longitudinal phase velocities, while the strain gradient parameter is the determining factor for their efficiency on the results.

A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates

  • Hamidi, Ahmed;Houari, Mohammed Sid Ahmed;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.235-253
    • /
    • 2015
  • In this research, a simple but accurate sinusoidal plate theory for the thermomechanical bending analysis of functionally graded sandwich plates is presented. The main advantage of this approach is that, in addition to incorporating the thickness stretching effect, it deals with only 5 unknowns as the first order shear deformation theory (FSDT), instead of 6 as in the well-known conventional sinusoidal plate theory (SPT). The material properties of the sandwich plate faces are assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is made of an isotropic ceramic material. Comparison studies are performed to check the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the thermomechanical behavior of functionally graded sandwich plates. The effect of side-to-thickness ratio, aspect ratio, the volume fraction exponent, and the loading conditions on the thermomechanical response of functionally graded sandwich plates is also investigated and discussed.

Improved HSDT accounting for effect of thickness stretching in advanced composite plates

  • Bouhadra, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Benyoucef, Samir;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.61-73
    • /
    • 2018
  • In this article, a higher shear deformation theory (HSDT) is improved to consider the influence of thickness stretching in functionally graded (FG) plates. The proposed HSDT has fewer numbers of variables and equations of motion than the first-order shear deformation theory (FSDT), but considers the transverse shear deformation influences without requiring shear correction coefficients. The kinematic of the present improved HSDT is modified by considering undetermined integral terms in in-plane displacements and a parabolic distribution of the vertical displacement within the thickness, and consequently, the thickness stretching influence is taken into account. Analytical solutions of simply supported FG plates are found, and the computed results are compared with 3D solutions and those generated by other HSDTs. Verification examples demonstrate that the developed theory is not only more accurate than the refined plate theory, but also comparable with the HSDTs which use more number of variables.

A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams

  • Bouafia, Khadra;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Benzair, Abdelnour;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • In this paper, size dependent bending and free flexural vibration behaviors of functionally graded (FG) nanobeams are investigated using a nonlocal quasi-3D theory in which both shear deformation and thickness stretching effects are introduced. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the present model to become effective in the analysis and design of nanostructures. The present theory incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore accounts for both shear deformation and thickness stretching effects by virtue of a hyperbolic variation of all displacements through the thickness without using shear correction factor. The material properties of FG nanobeams are assumed to vary through the thickness according to a power law. The neutral surface position for such FG nanobeams is determined and the present theory based on exact neutral surface position is employed here. The governing equations are derived using the principal of minimum total potential energy. The effects of nonlocal parameter, aspect ratio and various material compositions on the static and dynamic responses of the FG nanobeam are discussed in detail. A detailed numerical study is carried out to examine the effect of material gradient index, the nonlocal parameter, the beam aspect ratio on the global response of the FG nanobeam. These findings are important in mechanical design considerations of devices that use carbon nanotubes.

A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation

  • Hadji, Lazreg;Meziane, Mohamed Ait Amar;Safa, Abdelkader
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.771-781
    • /
    • 2018
  • This study deals with free vibrations analysis with stretching effect of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation. Four different carbon nanotubes (CNTs) distributions including uniform and three types of functionally graded distributions of CNTs through the thickness are considered. The rule of mixture is used to describe the effective material properties of the nanocomposite beams. The significant feature of this model is that, in addition to including the shear deformation effect and stretching effect it deals with only 4 unknowns without including a shear correction factor. The governing equations are derived through using Hamilton's principle. Natural frequencies are obtained for nanocomposite beams. The mathematical models provided in this paper are numerically validated by comparison with some available results. New results of free vibration analyses of CNTRC beams based on the present theory with stretching effect is presented and discussed in details. The effects of different parameters of the beam on the vibration responses of CNTRC beam are discussed.

Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory: Effect of the micromechanical models

  • Bouiadjra, Rabbab Bachir;Mahmoudi, Abdelkader;Benyoucef, Samir;Tounsi, Abdelouahed;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.317-328
    • /
    • 2018
  • In this paper, a new refined quasi-three-dimensional (3D) shear deformation theory for the bending analysis of functionally graded plate is presented. The number of unknown functions involved in this theory is only four against five or more in the case of the other shear and normal deformation theories. Due to its quasi-3D nature, the stretching effect is taken into account in the formulation of governing equations. In addition, the effect of different micromechanical models on the bending response of these plates is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG plates whose properties vary continuously across the thickness according to a simple power law. The present theory accounts for both shear deformation and thickness stretching effects by a parabolic variation of displacements across the thickness, and the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The problem is solved for a plate simply supported on its edges and the Navier solution is used. The results of the present method are compared with others from the literature where a good agreement has been found. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG plates.

Free vibration response of functionally graded Porous plates using a higher-order Shear and normal deformation theory

  • Bennai, Riadh;Atmane, Hassen Ait;Ayache, Belqassim;Tounsi, Abdelouahed;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.547-561
    • /
    • 2019
  • In this work, a new analytical approach using a theory of a high order hyperbolic shear deformation theory (HSDT) has been developed to study the free vibration of plates of functionally graduated material (FGM). This theory takes into account the effect of stretching the thickness. In contrast to other conventional shear deformation theories, the present work includes a new displacement field that introduces indeterminate integral variables. During the manufacturing process of these plates defects can appear as porosity. The latter can question and modify the global behavior of such plates. The materials constituting the plate are assumed to be gradually variable in the direction of height according to a simple power law distribution in terms of the volume fractions of the constituents. The motion equations are derived by the Hamilton principle. Analytical solutions for free vibration analysis are obtained for simply supported plates. The effects of stretching, the porosity parameter, the power law index and the length / thickness ratio on the fundamental frequencies of the FGM plates are studied in detail.

Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation

  • Hadji, Lazreg;Bernard, Fabrice
    • Advances in materials Research
    • /
    • v.9 no.1
    • /
    • pp.63-98
    • /
    • 2020
  • The novelty of this paper is the use of a simple higher order shear and normal deformation theory for bending and free vibration analysis of functionally graded material (FGM) beams on two-parameter elastic foundation. To this aim, a new shear strain shape function is considered. Moreover, the proposed theory considers a novel displacement field which includes undetermined integral terms and contains fewer unknowns with taking into account the effects of both transverse shear and thickness stretching. Different patterns of porosity distributions (including even and uneven distribution patterns, and the logarithmic-uneven pattern) are considered. In addition, the effect of different micromechanical models on the bending and free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams for which properties vary continuously across the thickness according to a simple power law. Hamilton's principle is used to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio, foundation parameter, the volume fraction of porosity and micromechanical models on the displacements, stresses, and frequencies.