• Title/Summary/Keyword: thickness eccentricity

Search Result 79, Processing Time 0.025 seconds

Thickness Control of Cold-Rolling Mills with Roll Eccentricity (롤편심을 포함한 냉간 압연시스템의 두께제어)

  • 김승수;김종식;황이철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.248-254
    • /
    • 1996
  • A disturbance rejection controller using eccentricity filtering and LQ control techniques is proposed to alleviate significantly the effect of roll eccentricity in multivariable cold-rolling processes. Fundamental problems such as process time delay inherent in exit thickness measurement and non-stationary characteristics of roll eccentricity signals can be overcome by the proposed control method. The filtered instantaneous estimate of roll eccentricity may be exploited to improve instantaneous estimate of the exit thickness variation based on roll force and roll gap mearsurements, and a feedforward compensator is augmented as a reference for a gaugemeter thickness estimator. And, LQ feedback controller is combined with eccentricity filter for the attenuation of the exit thickness variation due to the entry thickness variation. The simulation results show that eccentricity components have been significantly eliminated and simultaneously other distrubances also have been attenuated.

  • PDF

Multivariable Control of Cold-Rolling Mills with Roll Eccentricity (롤편심을 포함한 냉간압연 시스템의 다변수 제어)

  • Kim, Jong-Sik;Kim, Seung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.502-510
    • /
    • 1997
  • A disturbance rejection controller using eccentricity filtering and LQ control techniques is proposed to alleviate the effecto of major roll eccentricity in multivariable cold-rolling processes. Fundamental problems in multivariable cold-rolling processes such as process time delay inherent in exit thickness measurement and non-stationary characteristics of roll eccentricity signals can be overcome by the proposed control method. The filtered instantaneous estimate of roll eccentricity may be exploited to improve instantaneous estimate of the exit thickness variation based on roll force and roll gap measurements, and a feedforward compensator is augmented as a reference for a gaugemeter thickness estimator. LQ feedback controller is combined with eccentricity filter for the attenuation of the exit thickness variation due to the entry thickness variation. The simulation results show that the roll eccentricity disturbance is significantly eliminated and other disturbances also are attenuated.

Thickness Control of Tandem Cold Mills Using $H{\infty}$Control Techniques ($H{\infty}$제어기법에 의한 연속 냉간 압연시스템의 두께 제어)

  • 김종식;김승수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.145-155
    • /
    • 1998
  • An $H{\infty}$ controller with a roll eccentricity filter is proposed to alleviate the effect of entry thickness variation and roll eccentricity occured in rolling stands themselves of tandem cold mills. A robust controller to the disturbances is designed by H$_{\infty}$ control techniques, which can reflect the input direction of disturbances and the knowledge of disturbance spectrum in the frequency domain. First, fundamental problems in tandem cold mills such as process transport delay inherent in the exit thickness measurement and the feedforward loading of roll eccentricity signals on the exit thickness be overcome by the roll eccentricity filtering and the compensation for the error of gaugemeter thickness estimator. And non-satndard $H{\infty}$ control problem caused by the selection of weighting function having poles on the $J{\omega}$-axis is discussed. The resultant controller composed by an $H{\infty}$ controller and an estimator for the roll eccentricity is evaluated through computer simulations. The effectiveness of the proposed control method is compared to that of the conventional LQ controller method and a feedforward controller for the roll eccentricity, which has been already studied.

  • PDF

Effect of Thickness Eccentricity on Plastic Collapse of Subsea Pipeline under External Pressure (외압하에서 해저배관의 소성붕괴에 대한 두께 불균일 효과)

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.6
    • /
    • pp.14-19
    • /
    • 2011
  • The objective of this study was to investigate the effect of the thickness eccentricity on the collapse pressure of a subsea pipeline subjected to external pressure. The collapse behavior of the subsea pipeline containing initial imperfection was evaluated using elastic-plastic finite element (FE) analyses. API 5L X65 and API 5L X80 Pipelines with the thickness eccentricity values between 4~16% were adopted to investigate the plastic collapse under hydrostatic pressure. A parametric study was shown that the plastic collapse pressure decreased when either the thickness eccentricity or the ratio of diameter to thickness increased.

H$_{\infty}$ Control System for Tandem Cold Mills with Roll Eccentricity

  • Kim, Seung-Soo;Kim, Jong-Shik;Yang, Soon-Yong;Lee, Byung-Ryong;Ahn, Kyung-Kwan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.45-54
    • /
    • 2004
  • In order to meet the requirement for higher thickness accuracy in cold rolling processes, it is strongly desired to have high performance in control units. To meet this requirement, we have considered an output regulating control system with a roll-eccentricity estimator for each rolling stand of tandem cold mills. Considering entry thickness variation as well as roll eccentricity as the major disturbances, a synthesis of multivariable control systems is presented based on H$\sub$$\infty$/ control theory, which can reflect the knowledge of input direction and spectrum of disturbance signals on the design. Then, to reject roll eccentricity effectively, a weight function having some poles on the imaginary axis is introduced. This leads to a non-standard H_ control problem, and the design procedures for solving this problem are analytically presented. The effectiveness of the proposed control method is evaluated through computer simulations and compared to that of the conventional LQ control and feedforward control methods for roll eccentricity.

Design of H$\infty$ Control System for Tandem Cold Mills (연속 냉간 압연기의 H$\infty$ 제어시스템 설계)

  • Hyuk Um;Kim, Seung-Soo;Yang, Soon-Yong;Lee, Jin-Gul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.44-55
    • /
    • 2004
  • In order to meet the requirement for higher thickness accuracy in tandem cold rolling processes, it is strongly necessary to have good performance in control units. To meet this requirement, this paper suggested an output regulating control system with a roll-eccentricity estimator for each rolling stand of tandem cold mills. Considering entry thickness variation and roll eccentricity simultaneously as the major disturbances, a synthesis of multivariable control systems was presented based on H$\infty$ control theory, which could reflect the knowledge of input direction and spectrum of disturbance signals on design. Then, to effectively reject roll eccentricity, a weight function having some poles on the imaginary axis was introduced. This lead to a non-standard H$\infty$ control problem, and the design procedures for solving this problem were analytically presented. The effectiveness of the proposed control method was evaluated through computer simulations and compared to that of the conventional linear quardratic control and feedforward control methods for roll eccentricity.

A Study on the Roll Eccentricity Estimation by Using an ALE

  • Cho, Kyu-Young;Kim, Sang-Woo;Lee, Young-Kow;Jo, Sung-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.180.2-180
    • /
    • 2001
  • In the hot rolling process, the RF AGC (Roll Force Auto Gauge Control) is used to control the roll gap to reduce the variation of rolling force caused by the roll eccentricity and the variation of material thickness. However the effect of the roll eccentricity cannot be distinguished. To eliminate the effect of the roll eccentricity, the roll eccentricity estimation is needed to supplement some drawbacks of RF AGC. In this paper, an ALE(Adaptive Line Enhancer) that extracts the rolling force variation due to the roll eccentricity is suggested. We also provide an algorithm that enhances the convergence time of roll eccentricity estimation. The performance improvement of the Suggested algorithm is shown via simulations.

  • PDF

Numerical investigation of The characteristics of Biaxial Flexure Specimens (수치해석을 이용한 이방향 휨인장 시험체의 특성분석)

  • Kim, Ji-Hwan;Zi, Goang-Seup;Kang, Jin-Gu;Oh, Hong-Seob
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.614-617
    • /
    • 2008
  • This paper presents the numerical investigation of the characteristics of biaxial flexure specimens for the Biaxial Flexure Test(BFT) which was recently developed to measure the biaxial tensile strength of concrete. Using FEM, the effect of size and eccentricity on the specimens was evaluated. The parameters such as radious of the support and the loadings, thickness and free length were studied. The results of the FE analysis were entirely consistent with the predictive solution, when b/agt;0.4, h/alt;0.6 and the thickness of the specimens were increased. On the other hands, when b/agt;0.4, those with lesser free length showed good results. To limit the difference between the stresses at the end points of 2b as the specimen was sustained and the stress at the center point of the specimen are not over 10%, lateral eccentricity was analyzed to be in the limits of 3%.

  • PDF

Roll Wccentricity Control for Cold Strip Rolling Processes (냉간압연 공정에의 편심제어)

  • 백기남;류석환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.243-247
    • /
    • 1991
  • A roll eccentricity controller for a tandem cold rolling process is designed to attenuate the outlet thickness deviation due to roll eccentricity. In order to design the controller, the excess stability margin is maximized by solving a standard H.inf. optimization problem under the requirement that ensure disturbance rejection for a class of disturbance. Robust performance of the proposed controller is checked by a computer simulation.

  • PDF

Development of Feed-forward AGC using Adaptive Control Algorithm (적응기법을 이용한 Feed-forward AGC 기술 개발)

  • 홍성철;이영교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.168-171
    • /
    • 2003
  • Generally RF AGC (Roll Force Automatic Gauge Control) controls the roll gap using the variation of rolling force caused by the roll eccentricity and the entry thickness of material, but RE AGC takes the bad effect of the roll eccentricity. The Feed-forward (FF) AGC method, which controls the next stand roll gap by the estimation of the thickness variation due to skid mark is needed to supplement the shortage of RF AGC. In this paper, an adaptive filtering method which takes account of the kind of material, the final objective thickness and the rolling speed is proposed to predict skid mark thickness variation. In addition, an improved estimation method of control point using a speedometer and looper angle is suggested. Via on line test, the performance improvement of the suggested FF AGC method is verified.

  • PDF