• Title/Summary/Keyword: thickness direction

Search Result 1,432, Processing Time 0.033 seconds

Influence of crack geometry on fatigue crack growth behavior in 5083- H113 aluminium alloy (5083-H113 A1 합금의 피로균열진전거동에 미치는 균열형태의 영향)

  • 김정규;신용승;윤의박
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.781-789
    • /
    • 1988
  • The fatigue crack growth and crack closure behavior of long through-thickness cracks and small half-penny shaped surface cracks were investigated in 5083-H113 Aluminum alloy under constant amplitude testing by the unloading elastic compliance method. It was found that, in the Region II, the crack growth behavior of both through-thickness and surface cracks exhibited the tri-linear form with two transitions and no concern with stress ratio R. In the Region I $I_{ab}$ and I $I_{b}$, through-thickness cracks grew faster than surface cracks in length direction, but at .DELTA. K .leq.4 MPa.root.m for R=0.1 the growth rates of surface cracks in depth direction, grew faster than those of through-thickness cracks. When the crack closure was considered, the growth rates of through-thickness cracks lay between the growth rates of depth direction and the growth rates of length direction in surface cracks. It is suspected that this was caused by the difference of crack closure at depth and length direction of surface cracks.s.

Measurement of the Fiber Orientation Distribution for Thickness direction of Injection Molded Long Fiber Reinforced Polymeric Composites (장섬유강화 플라스틱 복합재의 사출성형에 있어서 두께방향의 섬유배향 분포측정)

  • 윤성운;박진국;조선형;김이곤
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.199-204
    • /
    • 1998
  • In this study, a method is presented which can be used to measure the fiber orientation distribution for thickness direction during injection molding using image processing. The intensity method in used for measuring the distribution. And the effects of fiber content, injection molding condictions on the orientation function are also discussed.

  • PDF

Mechanical strength analysis for functionally graded composite plates (경사기능 복합재료 판의 기계적 강도해석)

  • Na, Kyung-Su;Kim, Ji-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.66-69
    • /
    • 2005
  • Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.

  • PDF

Analysis of the Elbow Thickness Effect on Crack Location and Propagation Direction via Elastic-Plastic Finite Element Analysis (탄소성 유한요소 해석을 통한 곡관 두께에 따른 파손 위치 및 균열 진전 방향 분석)

  • Jae Yoon Kim;Jong Min Lee;Yun Jae Kim;Jin Weon Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.1
    • /
    • pp.26-35
    • /
    • 2022
  • When piping system in a nuclear power plant is subjected to a beyond design seismic condition, it is important to accurately determine possibility of crack initiation and, if initiation occurs, its location and time. From recent experimental works on elbow pipes, it was found that the crack initiation location and crack propagation direction of the SA403 WP316 stainless steel elbow pipe were affected by the pipe thickness. In this paper, the crack initiation location and crack propagation direction for SA403 WP316 stainless steel elbow pipes with different thickness were analyzed via elastic-plastic finite element analysis. Based on FE results, the effect of the pipe thickness on different crack initiation location and crack propagation direction was analyzed using ovality, stress and strain components. It was also confirmed that the presence of internal pressure had no effect on the crack initiation location and crack propagation direction.

Comparison of Mechanical Properties and Form Accuracy in FDM 3D Printing Based on Building Conditions (FDM 방식 3D 프린팅에서 제작 조건에 따른 기계적물성치와 형상정밀도의 실험적 비교)

  • Kim, Gi-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.52-59
    • /
    • 2021
  • In this study, we experimentally evaluated the mechanical properties and geometric form accuracy in FDM 3D printing processes based on the printing direction, building direction, and layer thickness. The specimen test results showed that the tensile strength increased by over 33% in the printing direction compared to the direction perpendicular to printing and the tensile strength becomes larger as the layer thickness decreased. Furthermore, the tensile and impact strengths in the building direction were significantly reduced due to the difference in the interlayer joining and bonding strengths of the fused material. Additionally, shrinkage of the material due to phase change induced curl distortion especially in thin and long 3D-printed products, which increased as the layer thickness increased.

A Study on the application for Z-Quality steel (Z-Quality 강재 적용에 대한 고찰)

  • Park, Sungjun;Ha, Yunsok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.8-13
    • /
    • 2017
  • The rolled carbon steel plate has anisotropic property in Z-direction(thickness direction). This is induced by cooling rate difference of Z-direction and sulfur which make non-metallic inclusion(MnS) at center line of thickness direction. Z-directional mechanical properties of normal steel plate are not generally specified and it is defined for Z-Quality steel only through tensile test in Z-direction. If Z-quality steel is not applied for cruciform joint, the lamella tearing will be occurred by tensile stress after welding & during operation of the structure. In this research, one equation estimating Z-directional(orthogonal to plate) stress was developed to prevent lamella tearing by welding. This equation deals with plate thickness & joint configuration(eccentricity, angle and curvature). Analyses were done by strain boundary method using sectional FE modeling and FE 3D models are also used for some cases. Designers can predict the possibility of lamella tearing by adequately applying the result and can appropriately minimize the application of Z-quality steel by revising welding design to some extent.

  • PDF

Vapor Permeability and Moisture Gradient on a Paulownia Wood for Inside Material of Furniture Making

  • Lee, Won-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.6
    • /
    • pp.447-451
    • /
    • 2008
  • This study was carried out to know the difference of vapor transmission on the thickness of Paulownia wood(Paulownia tomentosa). The behavior of moisture transmission of wood thickness direction is generally estimated by vapor permeability and vapor transmission resistance. In general, Paulownia wood is known to use of inside material for furniture making, because of the excellent ability of vapor adsorption and/or desorption. Quarter sawing Paulownia wood material is prepared and the thickness is 6.0mm, 7.0mm, 8.0mm, 9.0mm, 10.0mm, respectively. The measurement of vapor transmission were conducted by the "cup method" in accordance with JIS(Japanese Industrial Standard) Z-0208. The experiment was made in the condition of 49.8mmHg vapor pressure difference and $40^{circ}C$ at constant temperature. From the experiment results, it was considered that Paulownia wood is very stable on moisture variation and any other material conditions. In this experiment we found that the vapor permeability and vapor permeance was reduced with the increase of wood thickness to vapor direction and vapor transmission resistance and specific vapor transmission resistance was increased with the increase of wood thickness to vapor direction. Besides moisture contents of adsorption and desorption side were about 5 percent and 14 percent, respectively. Mean value was 9.5 percent and about 10 percent in dry oven method. Moisture gradient was reduced with the increase of wood thickness for a small moisture difference of adsorption and desorption side.

  • PDF

Change in Microstructure and Mechanical Properties through Thickness with Annealing of a Cu-3.0Ni-0.7Si Alloy Deformed by Cold Rolling (냉간압연된 Cu-3.0Ni-0.7Si 합금의 어닐링에 따른 두께방향으로의 미세조직 및 기계적 특성 변화)

  • Lee, Seong-Hee;Han, Seung Zeon
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.113-117
    • /
    • 2018
  • Effects of annealing temperature on the microstructure and mechanical properties through thickness of a cold-rolled Cu-3.0Ni-0.7Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5h at $200{\sim}900^{\circ}C$. The microstructure of the copper alloy after annealing was different in thickness direction depending on an amount of the shear and compressive strain introduced by rolling; the recrystallization occurred first in surface regions shear-deformed largely. The hardness distribution of the specimens annealed at $500{\sim}700^{\circ}C$ was not uniform in thickness direction due to partial recrystallization. This ununiformity of hardness corresponded well with an amount of shear strain in thickness direction. The average hardness and ultimate tensile strength showed the maximum values of 250Hv and 450MPa in specimen annealed at $400^{\circ}C$, respectively. It is considered that the complex mode of strain introduced by rolling effected directly on the microstructure and the mechanical properties of the annealed specimens.

Comparison of Cervical Flexor Muscles Thickness During Cranial-Cervical Flexor Exercise According to Pressure Levels and Eye Directions in Healthy Subjects

  • Chang, Jong Sung;Lee, Jeon Hyeong
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.50-54
    • /
    • 2015
  • Purpose: The purpose of this study is to investigate differences of cervical flexor muscle thickness (i.e., sternocleidomastoid muscle and deep cervical flexor muscles) depending on levels of pressure bio-feedback unit and eye directions during cranial-cervical flexor exercise in healthy subjects. Methods: A total of 30 subjects (12 males and 18 females) who had no medical history related to musculoskeletal and neurological disorders were enrolled in this study. They were instructed to perform cranial-cervical flexion exercise with adjustment of five different pressures (i.e., 22 mmHg, 24 mmHg, 26 mmHg, 28 mmHg, and 30 mmHg) using a pressure biofeedback unit, according to three different eye directions (i.e., $0^{\circ}$, $20^{\circ}C$, and $40^{\circ}C$). Muscle thickness of sternocleidomastoid muscle and deep cervical flexor muscles was measured according to pressure levels and eye directions using ultrasonography. Results: In results of muscle thickness in sternocleidomastoid muscle and deep cervical flexor muscles, the thickness of those muscles was gradually increased compared to the baseline pressure level (22 mmHg), as levels in the pressure biofeedback unit during cranial-cervical flexion exercise were increasing. In addition, at the same pressure levels, muscle thickness was increased depending on ascending eye direction. Conclusion: Our findings showed that muscle thickness of sternocleidomastoid muscle and deep cervical flexor muscles was generally increased during cranial-cervical flexion exercise, according to increase of eye directions and pressure levels. Therefore, we suggested that lower eye direction could induce more effective muscle activity than the upper eye direction in the same environment during cranial-cervical flexion exercise.

Elastic Buckling Analysis of a Simply Supported Orthotropic Plate with Exponentialy Variable Thickness (두께가 변하는 직교이방성판의 탄성좌굴해석)

  • 장성열;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.25-28
    • /
    • 2001
  • The problem considered is the buckling of a rectangular orthotropic plate, tapered in thickness in a direction parallel to two sides and compressed in that direction. Curves are presented showing the variation of buckling stress coefficient with the special loads. The type of thickness variation is exponential. While this paper is presented how to design for an efficient orthotropic plate taper from physical consideration.

  • PDF