• Title/Summary/Keyword: thickness differential

Search Result 464, Processing Time 0.023 seconds

Measurement and Verification of Thermal Conductivity of Multilayer Thin Dielectric Film via Differential 3$\omega$ Method (차등 3$\omega$ 기법을 이용한 다층 유전체 박막의 열전도도 측정 및 검증)

  • Shin Sang-Woo;Cho Han-Na;Cho Hyung-Hee
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.254-259
    • /
    • 2005
  • In this study, measurement of thermal conductivity of multilayer thin dielectric film has been conducted via differential 3$\omega$ method. Also, verification of differential 3$\omega$ method has been accomplished with various proposed criteria. The target film for measurement is 300 nm silicon dioxide and this thin film is covered with various thicknesses of upper protective layer. The upper protective layer is inserted between the target film and the heater line for purpose of electrical insulator or anti-oxidation barrier since the target film may be a good electrical conductor or a well-oxidizing material. However, the verification of differential 3$\omega$ method has not been conducted. Thus we have shown that the measurement of thermal conductivity of thin films with upper protective layer via differential 3$\omega$ method is verified to be reliable as long as the proposed preconditions are satisfied. Experimental results show that the experimental errors tend to increase with aspect ratio between upper protective layer thickness and width of the heater line due to heat spreading effect.

  • PDF

Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM

  • Mohammadimehr, M.;Shahedi, S.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.1-36
    • /
    • 2016
  • In the present study, the nonlinear magneto-electro-mechanical free vibration behavior of rectangular double-bonded sandwich microbeams based on the modified strain gradient theory (MSGT) is investigated. It is noted that the top and bottom sandwich microbeams are considered with boron nitride nanotube reinforced composite face sheets (BNNTRC-SB) with electrical properties and carbon nanotube reinforced composite face sheets (CNTRC-SB) with magnetic fields, respectively, and also the homogenous core is used for both sandwich beams. The connections of every sandwich beam with its surrounding medium and also between them have been carried out by considering Pasternak foundations. To take size effect into account, the MSGT is introduced into the classical Timoshenko beam theory (CT) to develop a size-dependent beam model containing three additional material length scale parameters. For the CNTRC and BNNTRC face sheets of sandwich microbeams, uniform distribution (UD) and functionally graded (FG) distribution patterns of CNTs or BNNTs in four cases FG-X, FG-O, FG-A, and FG-V are employed. It is assumed that the material properties of face sheets for both sandwich beams are varied in the thickness direction and estimated through the extended rule of mixture. On the basis of the Hamilton's principle, the size-dependent nonlinear governing differential equations of motion and associated boundary conditions are derived and then discretized by using generalized differential quadrature method (GDQM). A detailed parametric study is presented to indicate the influences of electric and magnetic fields, slenderness ratio, thickness ratio of both sandwich microbeams, thickness ratio of every sandwich microbeam, dimensionless three material length scale parameters, Winkler spring modulus and various distribution types of face sheets on the first two natural frequencies of double-bonded sandwich microbeams. Furthermore, a comparison between the various beam models on the basis of the CT, modified couple stress theory (MCST), and MSGT is performed. It is illustrated that the thickness ratio of sandwich microbeams plays an important role in the vibrational behavior of the double-bonded sandwich microstructures. Meanwhile, it is concluded that by increasing H/lm, the values of first two natural frequencies tend to decrease for all amounts of the Winkler spring modulus.

Differential diagnosis of ovarian cysts using ultrasonogrphy and progesterone assay in slaughtered cows (초음파검사 및 혈중 progesterone 농도측정에 의한 도축우 유래 난소낭종의 감별진단)

  • 박상국;김상욱;임종수;박장일;정만호
    • Korean Journal of Veterinary Service
    • /
    • v.21 no.1
    • /
    • pp.57-66
    • /
    • 1998
  • To establish the differential diagnosis and treatment method in bovine ovarian cysts, specially ovarian cysts with corpus luteum, serum progesterone concentration and ulrasonography for measuring the cyclic area, thickness of cystic wall and echogenicity of corpus luteum were investigated in cystic ovaries from slaughtered cows. The incidence rates of ovarian cysts were follicular cyst 69.2% and luteal cyst 30.8%. The incidence rates of 8 various types of ovarian cysts were as follows; 2Ba 32.3%, 2Aa 25.8% and 2Bb 14.5%, respectively. The thickness of cystic wall were 2Bb 3.93mm, 2Ab 3.70mm and 1Aa 1.93mm and the serum progesterone concentrations were above 1.0ng/$m\ell$ in 2Ab, 2Bb and IAa, respectively. The cystic area of ovarian cysts with corpus luteum was 288.30mm2, but ovarian cysts without corpus luteum 542.30$\textrm{mm}^2$, and the thickness of cystic wall 2.12mm and 2.40mm, respectively. The serum progesterone concentration was 1.91ng/$m\ell$ in ovarian cysts with corpus luteum and 1.20ng/$m\ell$ ovarian cysts without corpus luteum. There was not the correlations between thickness of cystic wall and serum progesterone concentration in ovarian cysts with corpus luteum, whereas, was the correlations in ovarian cysts without corpus. These results indicated that PGF2$\alpha$ analogues can be choice for treating the ovarian cysts with corpus luteum because serum progesterone concentrations were above 1.0ng/$m\ell$ in ovarian cysts with corpus luteum. In conclusion, it is suggest that ultrasonography is useful diagnostic tool for diagnosing and choicing of treatment remedy in cystic ovaries of bovine.

  • PDF

Vibration Analysis of Circular Plate with Continuously Varying Thickness (가변두께를 가지는 원판의 진동해석에 관한 연구)

  • Shin, Young Jae;Jaun, Su Ju;Yun, Jong Hak;Yoo, Yeong Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • paper presents the results of the use of the differential transformation technique in analyzing the free vibration of circular plates.calculations were carried out and were compared with previously published results. The results that were obtained when this method was used coincide with the results of The present analysis shows the usefulness and validity of differential transformation in solving a solid-circular and annular-plate problem in terms of free-vibration responses.

Buckling analysis of composite plates using differential quadrature method (DQM)

  • Darvizeh, M.;Darvizeh, A.;Sharma, C.B.
    • Steel and Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.99-112
    • /
    • 2002
  • The differential quadrature method (DQM) is a numerical technique of rather recent origin, which by its continually increasing applications in different problems of engineering, is a competing alternative to the conventional numerical techniques for the solution of initial and boundary value problems. The work of this paper concerns the application of the DQM in the area of the buckling of multi layered orthotropic composite plates with various boundary conditions the buckling of multi layered composite plates with constant and variable thickness under axial compressive static loading is considered. The effects of fiber orientation and boundary conditions on static behavior of composite plates are presented. The comparison of results from the present method and those obtained from NISA II software shows the accuracy and reliability of this method.

Three-dimensional free vibration analysis of cylindrical shells with continuous grading reinforcement

  • Yas, M.H.;Garmsiri, K.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.349-360
    • /
    • 2010
  • Three dimensional free vibrations analysis of functionally graded fiber reinforced cylindrical shell is presented, using differential quadrature method (DQM). The cylindrical shell is assumed to have continuous grading of fiber volume fraction in the radial direction. Suitable displacement functions are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical shell and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced cylinder due to the reduction in spatial mismatch of material properties and natural frequency.

Variational approximate for high order bending analysis of laminated composite plates

  • Madenci, Emrah;Ozutok, Atilla
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.97-108
    • /
    • 2020
  • This study presents a 4 node, 11 DOF/node plate element based on higher order shear deformation theory for lamina composite plates. The theory accounts for parabolic distribution of the transverse shear strain through the thickness of the plate. Differential field equations of composite plates are obtained from energy methods using virtual work principle. Differential field equations of composite plates are obtained from energy methods using virtual work principle. These equations were transformed into the operator form and then transformed into functions with geometric and dynamic boundary conditions with the help of the Gâteaux differential method, after determining that they provide the potential condition. Boundary conditions were determined by performing variational operations. By using the mixed finite element method, plate element named HOPLT44 was developed. After coding in FORTRAN computer program, finite element matrices were transformed into system matrices and various analyzes were performed. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.

Axisymmetric vibrations of layered cylindrical shells of variable thickness using spline function approximation

  • Viswanathan, K.K.;Kim, Kyung Su;Lee, Jang Hyun;Lee, Chang Hyun;Lee, Jae Beom
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.749-765
    • /
    • 2008
  • Free axisymmetric vibrations of layered cylindrical shells of variable thickness are studied using spline function approximation techniques. Three different types of thickness variations are considered namely linear, exponential and sinusoidal. The equations of axisymmetric motion of layered cylindrical shells, on the longitudinal and transverse displacement components are obtained using Love's first approximation theory. A system of coupled differential equations on displacement functions are obtained by assuming the displacements in a separable form. Then the displacements are approximated using Bickley-spline approximation. The vibrations of two-layered cylindrical shells, made up of several types of layered materials and different boundary conditions are considered. Parametric studies have been made on the variation of frequency parameter with respect to the relative layer thickness, length ratio and type of thickness variation parameter.

Free vibration of conical shell frusta of variable thickness with fluid interaction

  • M.D. Nurul Izyan;K.K. Viswanathan;D.S. Sankar;A.K. Nor Hafizah
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.601-610
    • /
    • 2024
  • Free vibration of layered conical shell frusta of thickness filled with fluid is investigated. The shell is made up of isotropic or specially orthotropic materials. Three types of thickness variations are considered, namely linear, exponential and sinusoidal along the radial direction of the conical shell structure. The equations of motion of the conical shell frusta are formulated using Love's first approximation theory along with the fluid interaction. Velocity potential and Bernoulli's equations have been applied for the expression of the pressure of the fluid. The fluid is assumed to be incompressible, inviscid and quiescent. The governing equations are modified by applying the separable form to the displacement functions and then it is obtained a system of coupled differential equations in terms of displacement functions. The displacement functions are approximated by cubic and quintics splines along with the boundary conditions to get generalized eigenvalue problem. The generalized eigenvalue problem is solved numerically for frequency parameters and then associated eigenvectors are calculated which are spline coefficients. The vibration of the shells with the effect of fluid is analyzed for finding the frequency parameters against the cone angle, length ratio, relative layer thickness, number of layers, stacking sequence, boundary conditions, linear, exponential and sinusoidal thickness variations and then results are presented in terms of tables and graphs.

Microstructure and Mechanical Properties of Cu-Ni-Si Alloy Deformed by Differential Speed Rolling (이속압연에 의해 가공된 Cu-Ni-Si 합금의 미세 조직 및 기계적 성질)

  • Lee, Seong-Hee;Han, Seung Zeon
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.8-12
    • /
    • 2016
  • Effects of conventional rolling(CR) and differential speed rolling(DSR) on the microstructure and mechanical properties of Cu-Ni-Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant with a differential speed ratio of 2:1. The conventional rolling in which the rolling speed of upper and lower rolls is identical was performed under identical rolling conditions. The shear strain introduced by the CR showed positive values at positions of upper roll side and negative values at positions of lower roll side. However, it showed zero or positive values at all positions for the samples rolled by the DSR. The microstrucure and texture development of the as-rolled copper alloy did not show any significant difference between CR and DSR. The tensile strength of the DSR processed specimen was larger than that of the CR processed specimen. The effects of rolling methods on the microstructure and mechanical properties of the as-rolled copper alloy are discussed in terms of the shear strain.