• Title/Summary/Keyword: theta products

Search Result 28, Processing Time 0.025 seconds

The Thermal Behavior of Transformation by Simultaneous $\alpha$-$Al_2O_3$ Seed Addition on the Al-Sec-Butoxide Hydrolysis (Al-Sec-Butoxide의 가수분해시에 있어서 $\alpha$-$Al_2O_3$종의 동시첨가에 의한 열적 전이거동)

  • 김창은;이해욱;최진관;김배연
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.808-816
    • /
    • 1990
  • The thermal behavior of transformation and characteristics of seeded sample powders prepared by simultaneous $\alpha$-Al2O3 seed addition with water on the Al-sec-butoxide hydrolysis were studied. $\alpha$-Al2O3 seed particles are shown to act as nuclei for transformation of $\theta$-to $\alpha$-Al2O3 and to result in an increase in thetransformation kinetics and lowering of the transformation temperature by as much as 143$^{\circ}C$. Simultaneous seed addition on the hydrolysis resulted in uniform dispersin and creation of nucleation site on seed surface and only 0.1wt% seeding lowered the transformation temperature by as much as 115$^{\circ}C$. For 3wt% seed addition, $\alpha$-Al2O3 single phase was obtained at 95$0^{\circ}C$ for 100 minutes and the specific surface area of products were lowered to 11.9$m^2$/g as compared with that of $\alpha$-Al2O3 powder prepared without seed at 115$0^{\circ}C$ ; 15.1$m^2$/g due to depression of vermicular structure growth.

  • PDF

Effect of Essential Oil from San-Jo-In (Zizyphus jujuba Mill. seeds) on Human Electroencephalographic Activity (산조인(Zizyphus jujuba Mill.) 에센셜오일 흡입이 인간의 뇌파에 미치는 영향)

  • Cho, Haeme;Yu, Byoungsun;Sowndhararajan, Kandhasamy;Jung, Ji-Wook;Jhoo, Jin-Woo;Kim, Songmun
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1170-1176
    • /
    • 2013
  • Essential oils have been used to treat psychophysiological disorders, but their effects on human electroencephalographic (EEG) activity have not been thoroughly investigated. We evaluated the effects of essential oil of Zizyphus jujuba seeds, a Korean folk medicine known as San-Jo-In, on human EEG activity. For this purpose, essential oil was extracted from San-Jo-In by the supercritical carbon dioxide extraction method. The effect of its inhalation on EEG activity was evaluated by measuring the EEG power spectrum (25 indices) in 20 healthy participants. The results of the EEG power spectrum indicated that the values of the theta wave decreased significantly (p<0.05) in the left (from 17.277 to $13.854{\mu}V$) and right parietal (from 15.324 to $13.020{\mu}V$) regions compared to the other regions. During the inhalation of San-Jo-In oil, the EEG spectrum values of fast alpha, relative gamma, and spectral edge frequency increased 50% compared to those before inhalation. The values of the fast alpha wave increased significantly (p<0.05) in the left prefrontal (from 0.063 to $0.085{\mu}V$), right prefrontal (from 0.064 to $0.085{\mu}V$), and left frontal (from 0.073 to $0.100{\mu}V$) regions following inhalation of the San-Jo-In essential oil. The changes in the EEG activities following inhalation of San-Jo-In suggest that the oil can improve psychological well-being by increasing attention and relaxation.

Synthesis of High Purity Alumina by Controlled Precipitation Method from Clay Minerals (I) Preparation of Aluminum Sulfate Hydrate and Alumina from Clay Minerals (점토 광물로부터 제어 침전법에 의한 고순도 알루미나의 합성 (I) 점토 광물로부터 수화 황산 알루미늄 및 알루미나의 제조)

  • No, Tae-Hwan;Lee, Heon-Su;Son, Myeong-Mo;Park, Hui-Chan
    • Korean Journal of Materials Research
    • /
    • v.2 no.1
    • /
    • pp.3-11
    • /
    • 1992
  • Aluminum sulfate hydrate was prepared using sulfuric acid from Ha-dong kaolin. The effects of calcination-temperature and calcination-time of kaolin, reaction-temperature and reaction-time, and sulfuric acid concentration on the formation of aluminum sulfate hydrate were investigated. The precipitation condition of aluminum sulfate hydrate from sulfuric acid solution was determined. Also, the products heat-treated at different temperatures have been investigated by X-ray diffraction, thermogravimetry, differential thermal analysis, Fourier transform infrared spectrophotometer, scanning electron microscopy, particle size distribution analysis and chemical analysis. In the optimum condition, the conversion of aluminum oxide in kaolin to aluminum sulfate hydrate was 60%. From the results of XRD, TG-DTA, and FT-IR, it is suggested that the aluminum sulfate hydrate is thermally decomposed as follows ; $Al_2(SO_4)_3{\cdot}18H_2O{\rightarrow}Al_2(SO_4)_3{\cdot}6H_2O{\rightarrow}Al_2(SO_4){\rightarrow}\;amorphous\;alumina{\rightarrow}{\gamma}-alumina{\rightarrow}{\delta}-alumina{\rightarrow}{\theta}-alumina{\rightarrow}{\alpha}-alumina$. The purity of alumina powder prepared by calcining aluminum sulfate hydrate at $1200^{\circ}C$ was 99.99 percent.

  • PDF

Decomposition Behavior of Secondary Solidification Phase During Heat Treatment of Squeeze Cast Al-Cu-Si-Mg (용탕단조 Al-Cu-Si-Mg합금의 열처리시 제2응고상의 분해거동)

  • Kim, Yu-Chan;Kim, Do-Hyang;Han, Yo-Sub;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.560-568
    • /
    • 1997
  • The dissolution behavior of secondary solidification phases in squeeze cast Al-3.9wt%Cu-1.5wt%Si-1.0wt%Mg has been studied using a combination of optical microscope, image analyzer, scanning electron microscope(SEM), energy dispersive spectrometer(EDS), X-ray diffractometer(XRD) and differential thermal analyzer (DTA). Special emphasis was placed on the investigation of the effects of the nonequilibrium heat treatment on the dissolution of the second solidification phases. Ascast microstructure consisted of primary solidification product of ${\alpha}-Al$ and secondary solidification products of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$. Equilibrium and non-equilibrium solution treatments were carried out at the temperatures of $495^{\circ}C$, $502^{\circ}C$ and $515^{\circ}C$ for 3 to 5 hours. The amount of the dissolved secondary phases increased with increasing solution treatment temperature, for example, area fractions of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$ were approximately 0%, 1.6% and 4.2% after solution treatment at $495^{\circ}C$ for 5hours, and were approximately 0%, 0.36% and 2% after solution treatment at $515^{\circ}C$ for 5hours. The best combination of tensile properties was obtained when the as-cast alloy was solution treated at $515^{\circ}C$ for 3hours followed by aging at $180^{\circ}C$ for 10 hours. Detailed DTA and TEM study showed that the strengthening behavior during aging was due to enhanced precipitation of the platelet type fine ${\theta}'$ phase.

  • PDF

Physicochemical Properties of Sweet Potato Starch Reclaimed from Sweet Potato Processing Sludge (고구마 가공 슬러지로부터 회수된 고구마 전분의 물리화학적 특성)

  • Kim, Hyun-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.747-753
    • /
    • 2013
  • The physicochemical properties of sweet potato (SP) starches reclaimed from an SP-processing sludge without freezing (RC/NF) and with freezing (RC/FR) were investigated. Lab-isolated (LI) SP starch, as a control, were prepared from raw SP. RC/NF and RC/FR SP starches were recovered from SP-processing sludges by the repeated sieving and washing procedure. The total starch contents and amylopectin branch-chain distributions did not differ for three SP starches. Relative to LI and RC/NF SP starches (possessing similar physicochemical characteristics), the apparent amylose and phosphorus contents, swelling factor, and pasting viscosity were reduced for RC/FR SP starch. However, the freezing treatment altered X-ray diffraction pattern (at $5.5^{\circ}$, $11-12^{\circ}$, and $24^{\circ}$ $2{\theta}$) of RC/FR SP starch, which likely increased its gelatinization peak and completion temperatures. Its amorphous region in total diffractogram was reduced, resulting in the enhanced relative crystallinity. Overall results suggested SP starches recovered from an SP-processing sludge would have the potential to replace commercial SP starch products.

The Effect of Acupressure Thermal Bed Combined with Acupressure and Thermal Therapy on Brain waves and ANS (지압과 온열 요법이 조합된 지압온열침대가 뇌파와 자율신경에 미치는 영향)

  • Jang, Seok-Woo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.179-186
    • /
    • 2020
  • The purpose of this study was to investigate the effects on the bio signal of brain waves and pulse waves using acupressure thermal bed combined with acupressure and thermal therapy. Forty healthy adults were divided into 20 experimental groups using combinatorial stimulation beds and 20 non-irritating controls. As a result of the experiment, the EEG was significantly increased in the delta wave and theta wave in the experimental group, and the alpha wave and beta wave decreased significantly. The pulse wave increased the parasympathetic activity index in the experimental group and the heart rate decreased. There was no difference in the control group. This change in EEG can be seen as a combination stimulation bed having a sleep-inducing effect, and a change in pulse wave can seen as having a relaxing effect. This study is expected to be used as basic data for the development of various combination stimulators and functional bed products.

ELECTROCHEMICAL STUDY ON THE CORROSION BEHAVIOUR OF DENTAL AMALGAM IN ARTIFICIAL SALIVA (인공타액에서 아말감의 부식거동에 관한 전기화학적 연구)

  • Kim, Yeoung-Nam;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.2
    • /
    • pp.221-235
    • /
    • 1988
  • The purpose of this study was to observe characteristic properties through the polarization curves and EMPA images from 4 different types of amalgam obtained by using the potentiostats (EG & G PARC) & EPMA (Jeol JSM-35), to investigate the degree of corrosion of each phase of amalgam on the oxidation peak, and to identify corrosion products from the corroded amalgam by use of X-ray diffractometer(Rigaku). After each amlgam alloy and Hg were triturated as the direction of the manufacturer by means of the mechanical amalgamator(Shofu), the triturated mass was inserted into the cylindrical metal mold which was 12mm in diameter and 10mm in height and was condensed by means of routine manner. The specimen was removed from the mold and stored at room temperature for about 7 days. The standard surface preparation was routinely carried out. Anodic polarization measurement was employed to compare the corrosion behaviours of the amalgams in 0.9% saline solution(pH6.8~7.0) and artificial saliva (pH6.8~7.0) at $37^{\circ}C$. The open circuit potential was determined after 30 minutes' immersion of specimen in electrolyte and the potential scan was begun at the potential of 100mV cathodic from the corrosion potential. The scan rate was 1mV/sec and the surface area of amalgam exposed to the solution was 0.64$cm^2$ for each specimen. All the potentials reported are with respect to a saturated calomel electrode (SCE). EPMA images on the determined oxidation peaks of each amalgam in artificial saliva were observed. X-ray diffraction patterns of each sample were recorded before and after polarization in artificial saliva (Aristaloy, Caulk Spherical, Dispersalloy and Tytin: at +770mV, +585mV, +8.10m V and +680m V respectively) by use of a recording diffractometer. Nickel filtered Cu $K_{{\alpha}_1}$ radiation was used and sample was scanned at $4^{\circ}(2{\theta})/min.$ from $25^{\circ}$ to $80^{\circ}$. The following results were obtained. 1. Oxidation peak potential in artificial saliva shifted to more anodic direction than that in saline solution. 2. The corrosion potential of high copper amalgam was more anodic than the potential of low copper amalgam. 3. The current density was lower in artificial saliva than in saline solution. 4. One of the corrosion products, AgCl was identified by X-ray diffraction analysis. 5. ${\gamma}_2$ phase was the most susceptible to corrosion and e phase was stable in low copper amalgam and ${\eta}$' phase and Ag-Cu eutectic were susceptible to corrosion in high copper amalgam.

  • PDF

Preparation and Properties of Shape-Stabilized Phase Change Materials from UHMWPE and Paraffin Wax for Latent Heat Storage (파라핀과 초고분자량 폴리에틸렌으로 구성된 형태안정성 상 전이 물질의 제조 및 특성)

  • Lee, Hyun-Seok;Park, Jae-Hoon;Yim, Jong-Ha;Seo, Hye-Jin;Son, Tae-Won
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.23-32
    • /
    • 2015
  • Phase change materials based on ultra high molecular weight of polyethylene (UHMWPE) blended with paraffin wax (mp $65^{\circ}C$) were studied in this paper. In addition, this paper reviews recent studies on the preparation of shape stabilized phase change materials (SSPCM), such as SSPCM from UHMWPE and paraffin wax (mp $65^{\circ}C$), their basic properties and possible applications to latent heat storage. The preparation method was an absorption method. Also, SSPCM composites were prepared by using a hot press at $200^{\circ}C$ for 10 min. The analysis for the shape ability of SSPCM to improve heat efficiency was measured by FTIR, SEM, DSC, XRD, and ARES. UHMWPE composites with 30 wt% paraffin wax (mp $65^{\circ}C$) demonstrated less deterioration of physical property and effective thermal property compared with other conditions. As a result, these SSPCMs could be used for the heat storage and release materials for various products.