• 제목/요약/키워드: thermotolerant yeast

검색결과 39건 처리시간 0.019초

Screening and Characterization of Thermotolerant Alcohol-producing Yeast

  • Sohn, Ho-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권3호
    • /
    • pp.215-221
    • /
    • 1994
  • Two strains of yeast (RA-74-2 and RA-912) showing superior fermenting ability at a high temperature were isolated from soils and wastewaters by an enrichment culture method. Based on the morphological and physiological charateristics, the two strains were identified as Saccharomyces cerevisiae and Kluyveromyces marxianus, respectively. RA-74-2 was able to grow upto $43^{\circ}C$ and sustain similar fermenting ability in the temperatures range from 30 to $40^{\circ}C$. In addition, the sugar- and ethanol-tolerance of RA-74-2 were 30% (w/v) glucose and 10% (v/v) ethanol, which appeared to be higher than those of nine other industrial yeast strains currently being used in the alcohol factories. The thermotolerant ethanol fermenting yeast RA-912 showed identical growth in the temperatures range from 35 to $45^{\circ}C$ and was resistant to various heavy metals. The quality and quantity of byproducts of the isolated yeast strains in fermentation broth after fermentation at $40^{\circ}C$ and $45^{\circ}C$ were similiar with those obtained at $30^{\circ}C$. These results show that RA-74-2 can be adopted for the ethanol fermentation process where the expenses for cooling system is significant, and suggest that RA-912 may be applied in either SSF(simultaneous saccharification and fermentation) or Flash-fermentation process and RA-912 may be used as a gene donor for the development of thermotolerant ethanol-fermenting yeasts.

  • PDF

The Application of Thermotolerant Yeast Kluyveromyces marxianus as a Potential Industrial Workhorse for Biofuel Production

  • Park, Jae-Bum;Kim, Jin-Seong;Jang, Seung-Won;Hong, Eunsoo;Ha, Suk-Jin
    • KSBB Journal
    • /
    • 제30권3호
    • /
    • pp.125-131
    • /
    • 2015
  • Kluyveromyces marxianus is a well-known thermotolerant yeast. Although Saccharomyces cerevisiae is the most commonly used yeast species for ethanol production, the thermotolerant K. marxianus is more suitable for simultaneous saccharification and fermentation (SSF) processes. This is because enzymatic saccharification usually requires a higher temperature than that needed for the optimum growth of S. cerevisiae. In this study, we compared the fermentation patterns of S. cerevisiae and K. marxianus under various temperatures of fermentation. The results show that at a fermentation temperature of $45^{\circ}C$, K. marxianus exhibited more than two fold higher growth rate and ethanol production rate in comparison to S. cerevisiae. For SSF using starch or corn stover as the sole carbon source by K. marxianus, the high temperature ($45^{\circ}C$) fermentations showed higher enzymatic activities and ethanol production compared to SSF at $30^{\circ}C$. These results demonstrate the potential of the thermotolerant yeast K. marxianus for SSF in the industrial production of biofuels.

연료용 알콜의 고온생산을 위한 고온성 효모 Saccharomyces cerevisiae F38-1의 분리 (Isolation of Saccharomyces cerevisiae F38-1, a Thermotolerant Yeast for Fuel Alcohol Production at Higher Temperature)

  • 김재완;진익렬;서정훈
    • 한국미생물·생명공학회지
    • /
    • 제23권5호
    • /
    • pp.617-623
    • /
    • 1995
  • A new thermotolerant yeast strain was siolated, and its characteristics have been studied. The strain was identified and named Saccharomyces cerevisiae F38-1. This strain could grow not only at high temperature, but also in high concentrations of sugar and ethanol. S. cerevisiae F38-1 could grow in a medium containing 50% glucose. The isolate produced ethanol at 43$\circ$C, but didn't grow at 40$\circ$C in the presence of 8% ethanol. Fermentation studies showed that the isolate ferments 20% glucose to 9.8% (V/V) ethanol at 40$\circ$C in the presence of 0.2%, yeast extract.

  • PDF

메주에서 분리한 고온성 효모 Sccharomyces cerevisiae OE-16 의 생리적 특성과 알코올발효 (Physiological Characteristics and Ethanol Fermentation of Thermotolerant Yeast Saccharomyces cerevisiae OE-16 from Traditional Meju)

  • 김나미
    • 한국식품영양학회지
    • /
    • 제12권5호
    • /
    • pp.490-495
    • /
    • 1999
  • A thermotolerant yeast Saccharomyces cerevisiae OE-16 was isolated from traditional Meju was investigated on their physiological characteristics and ethanol fermentation ability. Saccharomyces cerevisiae OE-16 were able to grow up to 45$^{\circ}C$ and 40% of glucose. Saccharomyces cerevisiae OE-16 was also resistant to 15% of KCl 1,200ppm of Pb2+, Hg2+ and 500ppm of potassium sorbate. From 20% glucose media Saccharomyces cerevisiae OE-16 produced 83.4g per liter of ethanol at 3$0^{\circ}C$ and 9.5g per liter of ethanol at 4$0^{\circ}C$ for 72 hours.

  • PDF

Characterization of Ethanol Fermentation Using Alginate Immobilized Thermotolerant Yeast Cells

  • Sohn, Ho-Yong;Park, Wan;Jin, Ingnyol;Seu, Jung-Hwn
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권1호
    • /
    • pp.62-67
    • /
    • 1997
  • To enhance the hyperproductive and low energy-consuming ethanol fermentation rate, the thermotolerant yeast S. cerevisiae RA-74-2 cells were immobilized. An efficient immobilization condition was proved to be $1.5{\%}$ (w/v) alginate solution, neutral pH and 20 h activation of beads. The fermentation characteristics and stability at various temperatures were examined as compared with free S. cerevisiae RA-74-2 cells. The immobilized cells had excellent fermentation rate at the range of pH 3-7 at 30-$42^{\circ}C$ in 15-$20{\%}$ glucose media. When the seed volume was adjusted to 0.12 (v/v) (6ml bead/50 ml medium), $11{\%}$ (w/v) ethanol was produced during the first 34 hand $12.15{\%}$ (w/v) ethanol [$95{\%}$ (w/v) of theoretical yield] during the first 60 h in $25{\%}$ glucose medium. In repetitive fermentation using a 2 litre fermentor, 5.79-$7.27{\%}$ (w/v) ethanol [76-$95{\%}$ (w/v) of theoretical yield] was produced during the 40-55 h in $15{\%}$ glucose media. These data suggested the fact that alginate beads of thermotolerant S. cerevisiae RA-74-2 cells would contribute to economic and hyperproductive ethanol fermentation at high temperature.

  • PDF

연료용 알콜의 고온발효를 위해 분리한 고온성 효모균주 Saccharomyces cerevisiae F38-1의 발효 특성 (The Fermentation Characteristics of Saccharomyces cerevisiae F38-1 a Thermotolerant Yeast Isolated for Fuel Alcohol Production at Elevated Temperature)

  • 김재완;김상헌;진익렬
    • 한국미생물·생명공학회지
    • /
    • 제23권5호
    • /
    • pp.624-631
    • /
    • 1995
  • The fermentation characteristics of Saccharomyces cerevisiae F38-1, a newly isolated thermotolerant yeast strain from a high temperature environment have been studied using a fermentation medium containing 20% glucose, 0.2% yeast extract, 0.2% polypeptone, 0.3% (NH$_{4}$)$_{2}$SO$_{4}$, 0.1% KH$_{2}$PO$_{4}$, and 0.2% MgSO$_{4}$ without shaking at 30$\circ$C to 43$\circ$C for 5 days. The fermentability was over 90% at 30$\circ$C, 88% at 37$\circ$C, 77% at 40$\circ$C and 30% at 43$\circ$C. A similar fermentation result was obtained at pH between 4 and 6 at 30$\circ$C and 40$\circ$C. Aeration stimulated the growth of the strain at the beginning of the fermentation, but it reduced alcohol production at the end of alcohol fermentation. Optimal glucose concentration was determined to be between 18 and 22% at 40$\circ$C as well as 30$\circ$C, but the growth was inhibited at the glucose concentration of over 30%. A fermentability of over 90% was observed at 40$\circ$C in 2 days when the medium was supplemented by 2% yeast extract. A higher inoculum size increased the initial fermentation rate, but not the fermentation. A fermentability of over 90% was achieved in 2 days at 40$\circ$C in a fermentor experiment using an optimized medium containing 20% glucose and 1% yeast extract.

  • PDF

Ethanol 발효를 위한 내열성 효모 균주의 Screening (Screening of Thermotolerant Yeast Strain for Ethanol Fermentation)

  • Ryu, Beung-Ho;Nam, Ki-Du;Kim, Hae-Sung;Kim, Dong-Seuk;Ji, Young-Ae;Jung, Soo-Ja
    • 한국미생물·생명공학회지
    • /
    • 제16권4호
    • /
    • pp.265-269
    • /
    • 1988
  • 고온 알코올 발효에 필요한 새로운 내열성 효모 균주를 개발할 목적으로, 당밀에서 분리하였다. 내열성 효모중 높은 온도에서 알코올 생산능을 검토하여 알코올 생산능이 우수한 3균주를 얻었다. 이들 균주는 pH5.0, 34$^{\circ}C$에서 알코올 발효를 하였을 때 기질로서 포도당을 함유한 합성배지에서 평균 75g/ι의 알코올을 얻을 수 있었다. 이들 균주는 Saccharomyces cerevisiae와 Kluveromyces marxianus로 동정되었다.

  • PDF

Screening of Thermotolerant Yeast for Use as Microbial Feed Additive

  • Lee, Jae-Heung;Lim, Yoo-Beom;Koh, Jong-ho;Baig, Soon-Yong;Shin, Hyung-Tai
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.162-165
    • /
    • 2002
  • With the objective of identifying the commercial potential of new direct-fed microbials, several temperature-tolerant strains were isolated from cane molasses at $39^{\circ}C$ and tested for their tolerance to pH, bile salts, and a mixture of volatile fatty acids (acetic acid:propionic acid:butyric acid=6.5:2.0:1.5). It was found that the isolated strain DY 252 grew very well up to pH 2.0 and was resistant to relatively high concentrations of bile salts. Among the strains tested, DY 252 was least inhibited by the addition of volatile fatty acids to the growth medium at $39^{\circ}C$. Accordingly, it would appear that strain DY 252, identified as yeast Issatchenkia orientalis, may be a potential candidate for use as a microbial feed additive.

쌀보리 알콜발효 증류폐액으로부터 균체 단백질 생산을 위한 내열성 효모, Candida rugosa의 이용 (Application of Therrnotolerant Yeast, Candida rugosa for the Production of Yeast Protein from Rye Stillages)

  • 김영근;이기영;이용익;김만근;이철호
    • 한국미생물·생명공학회지
    • /
    • 제21권3호
    • /
    • pp.281-287
    • /
    • 1993
  • Rye stillage was adopted as a substrate for the production of yeast biomass by a thermotolerant yeast Candida rugosa isolated from East Africa. In the batch fermentation, the yield of biomass and crude protein reached 4.9-8.4g/l and 2.2-3.5g/l, respectively, the rate of COD reduction was about 20%. Over 90% amount of main components such as glycerol and lactic acid were assimilated, but protein assimilation reached only to 38-45% of the initial content. Crude protein content of the dry yeast biomass produced was 42-47% and sulfur-containing amino acid was revealed as limiting essential amino acid.

  • PDF

Application of Thermotolerant Yeast at High Temperature in Jar-fermentor Scale.

  • Sohn, Ho-Yong;Kim, Young-Ho;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권4호
    • /
    • pp.316-321
    • /
    • 1994
  • We investigated the possibility of industrial application and economit process of high temperature fermentation by thermotolerant alcohol producing yeasts as previously reported. From the 20% glucose media, the RA-74-2 produced 11.8% (v/v) ethanol at $32^{\circ}C$ (0.5% inoculum) and 10.6% (v/v) ethanol at $40^{\circ}C$ (3% inoculum), respectively. Also, 11.3% (v/v) ethanol was produced for 96 hours in the temperature-gradient fermentation. These results suggest that the RA-74-2 could isuccessfully be applied to save the cooling water and energy in industrial scale without re-investment or modification of established fermentation systems. When potato starch was used as the substrate for the RA-74-2, high temperature fermentation above $40^{\circ}C$ was more appropriate for industrial utilization because organic nitrogen was not necessary to economical fermentation. As the naked barley media just prior to industrial inoculation, taken from the Poongkuk alcohol industry Co., were used, 9.6% (v/v) ethanol was produced at $40^{\circ}C$ for 48 hours in jar-fermentor scale (actually, 9.5-9.8% (v/v) ethanol was produced at 30~$32^{\circ}C$ for 100 hours in industrial scale). The ethanol productivity was increased by the high glucoamylase activity as well as the high metabolic ratio at $40^{\circ}C$ Therefore, if the thermotolerant yeast RA-74-2 would be used in industrial scale, we could obtain a high productivity and saving of the cooling water and energy. Meanwhile, the RA-912 produced 6%(v/v) ethanol in 10% glucose media at $45^{\circ}C$ and showed the less ethanol-tolerance compared with industrial strains. As the produced alcohol was recovered by the vacuum evaporator at $45^{\circ}C$ in 15% glucose media, the final fermentation ratio was enhanced (76% of theoretical yields). This suggest that a hyperproductive process could be achieved by a continuous input of the substrate and continuous recovery of the product under vacuum in high cell-density culture.

  • PDF