• Title/Summary/Keyword: thermotolerant

Search Result 85, Processing Time 0.025 seconds

Protoplast Fusion of Saccharomyces and Kluyveromyces to Develop Thermotolerant Ethanol-Producing Yeast Strains (고온내성 에탄올 생산 효모균주의 개발을 위한 Saccharomyces와 Kluyveromyces의 원형질체 융합)

  • Kim, Min-Soo;Kim, Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.2
    • /
    • pp.80-86
    • /
    • 2000
  • To develop thermotolerant ethanol producing yeast strains, the protoplasts of Saccharomyces carlsbergensis having good fermentability at $30^{\circ}C$ and Kluyveromyces marxianus able to grow at $42^{\circ}C$ were fused. Under the optimal conditions for protoplast formation, the frequency of protoplast formation of S. carlsbergensis was 92 - 94% and that of K. marxianus was 98%. Fusion frequency between S. carlsbergensis and K. marxianus was $1.4\times10^{-6}-4.8$\times10^{-7}$. Among the 27 fusants obtained, 6 fusants were able to grow at $42^{\circ}C$. While the parental strains produced 3.2-3.4%(w/v) ethanol after 3 days from the fermentation medium containing glucose, fusants SK41-4 and SK53-22 produced 5.2%(w/v) ethanol in the same condition. The thermotolerance of SK53-22 was not high, but that of SK41-4 was quite high.

  • PDF

Characterization of the BTEX-degrading pathway genes in Ralstonia sp. strain PHS1

  • Lee, Sun-Bok;Lee, Sung-Kuk
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.116-117
    • /
    • 2001
  • A thermotolerant bacterium, designated as PHS1, was isolated from a hot spring in Pohang, Korea, on the basis of its ability to grow on BTEX as a sole carbon source. We cloned and sequenced the entire BTEX-degrading pathway genes of PHS1 and found that two multicomponent mono-oxygenases together with meta-pathway genes are responsible for the BTEX biodegradation.

  • PDF

The Fermentation Characteristics of Newly Selected Thermotolerant Yeasts at High Temperature

  • Sohn, Ho-Yong;Park, Wan;Jin, Ing-Nyol;Seu, Jung-Hwn
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.222-229
    • /
    • 1994
  • In order to develop a method of economical production and to reduce energy-consumption in fuel alcohol production, we investigated the fermentation characters of two newly selected thermotolerant yeasts. The RA-74-2 showed stable and superior fermentability between 30 and $40^{\circ}C$ in 20% glucose media in comparison to the industrial strains. The optimum concentration of glucose for economical fermentation at $40^{\circ}C$ was 15-18%, and organic nitrogen was necessary for a satisfactory fermentation. The optimum pH was 4.0 and aeration was adversed for high temperature fermentation. Agitation was an important factor at $40^{\circ}C$ and the addition of magnesium ion 0.2% was required in this experiment. When the inoculum was increased, ethanol productivity as well as the speed of fermentation increased. On the other hand RA-912, which can grow at $48^{\circ}C$, showed similar fermentability between 30-$45^{\circ}C$ in 20% glucose media As the concentration of substrate decreased, fermentation ratio increased at $45^{\circ}C$ (45%, 65%, 95% fermentation ratio in 20%, 15%, 10% glucose media, respectively). Also, requirement of organic nitrogen and magnesium ion in RA-912 was similar in RA-74-2. The optimum pH for fermentation was 5.0, and the effects of agitation were enhanced at $37^{\circ}C$ than at $45^{\circ}C$. As the inoculum was increased, fermentation speed became more enhanced but the ethanol productivity was less affected. RA-912 showed fermentability with various substrates. Among the substrates used, inulin was the most promising substrate for the high-temperature fermentation. When 14.5% inulin was used as the substrate, 93% and 55% fermentation ratios were shown at $37^{\circ}C$ and $45^{\circ}C$, respectively.

  • PDF

Isolation of Xylitol-Producing Thermotolerant Yeast Millerozyma farinosa from Nuruk (누룩으로부터 자일리톨 생산능이 있는 내열성 효모 Millerozyma farinosa 균주의 분리)

  • Jung, Eun-Hye;Bae, Young-Woo;Kwun, Se-Young;Park, Eun-Hee;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.530-535
    • /
    • 2019
  • Diverse types of nuruks (traditional Korean fermentation initiators) were examined in order to isolate thermotolerant yeast strains capable of utilizing xylose as a carbon source. Among twenty yeast strains that grew at 46℃, MBY/L1597 showed a notably higher specific growth rate than other strains. This strain was identified as Millerozyma farinosa. While the control strain M. farinosa KCTC27412 (= CBS7064) did not show xylose reductase (XR) activity and apparent growth at 46℃, M. farinosa MBY/L1597 exhibited XR activity of 4.98 ± 0.49 U/mg protein when NADPH was used as a cofactor. M. farinosa MBY/L1597 cultured at 46℃ produced (9.87 ± 1.00 g/l) xylitol from 20 g/l xylose, corresponding to approximately 50% yield. M. farinosa MBY/L1597 was deposited at the Korean Collection for Type Cultures as KCTC27797.

Status of Drinking Water in Pproyap and Langthle, Cambodia (캄보디아 쁘로얍 지역과 랭뜰 지역 거주민의 먹는물 현황)

  • Kim, Younkwon;Kim, Sungpil;Chae, Seonha
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.5
    • /
    • pp.357-368
    • /
    • 2016
  • Cambodia is the representative of developing country in Southeast Asia region. As a view point of water resource, Cambodia has in abundance but public sanitation problems persist in rural areas due to unsafe drinking water and untreated human waste. The purpose of this research is to prepare and develop new strategies for the water aid program in Cambodia by assessing, reviewing, and analyzing the present situation of water pollution for rural areas and the existing water use cycle in these regions. Pproyap and Langthle regions in Pursat province are selected as research areas. Cambodian's rural population in research areas relies on surface water stored in drinking-detention swamps, rain-water jars, and unprotected wells. The two types of main measures, thermotolerant coliform(TTC) bacteria and general pollutants, were conducted to assess the quality of selected water samples for research areas. TTC is a bacterial indicator of waterborne fecal contamination. For the 26 water samples, only one of the samples met the WHO standard for safe drinking water of 0 TTC colony forming units/100 mL.

Development of Strain Fermenting the Glucose/Cellbiose Mixed Sugar for Simultaneous Saccharification of Fermentation of Cellulosic Materials (섬유소 물질의 동시당화발효에 적합한 Glucose/Cellbiose 혼합당 발효균주의 개발)

  • 박승원;홍영기;김승욱;홍석인
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.2
    • /
    • pp.145-152
    • /
    • 1999
  • Brettanomyces custersii CBS 5512 which has reported as a thermotolerant glucose-cellobiose co-fermentable yeast strain was mutated with UV and NTG to improve ethanol yield at higher than 4$0^{\circ}C$ B. custersii H1-23, H1-39, H1-55 and H1062 were finally selected for hyper-fermentable strains at higher than 4$0^{\circ}C$ from thermotolerant 7510 colonies through 5th selection. Among the selected strains, H1-39 mutant had better fermentability at 4$0^{\circ}C$ and 43$^{\circ}C$ from different concentrations of glucose. H1-39 and H1-23 mutants yielded more than 70% of the theoretical ethanol yield in 4 and 8% mixed sugars at above 4$0^{\circ}C$, which was 5-11% higher than those by original strain. Especially, H1-39 mutant had better fermentability in 4% mixed sugar. It showed 78.5% of the theoretical yield at 4$0^{\circ}C$ and 72.2% of the theoretical yield at 43$^{\circ}C$. On the other hand, theoretical yield of ethanol by H1-39 mutant in 8% mixed sugar at 4$0^{\circ}C$ and 43$^{\circ}C$ were 75.2% and 70.2%, respectively. Theses values increased up to 7-11% as compared to those by orginal strain. By the simultaneous saccharification and fermentation, ethanol production by H1-39 mutant increased up to more than 23% as compared to that by original strain.

  • PDF

Whole genome sequence analyses of thermotolerant Bacillus sp. isolates from food

  • Phornphan Sornchuer;Kritsakorn Saninjuk;Pholawat Tingpej
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.35.1-35.12
    • /
    • 2023
  • The Bacillus cereus group, also known as B. cereus sensu lato (B. cereus s.l.), is composed of various Bacillus species, some of which can cause diarrheal or emetic food poisoning. Several emerging highly heat-resistant Bacillus species have been identified, these include B. thermoamylovorans, B. sporothermodurans, and B. cytotoxicus NVH 391-98. Herein, we performed whole genome analysis of two thermotolerant Bacillus sp. isolates, Bacillus sp. B48 and Bacillus sp. B140, from an omelet with acacia leaves and fried rice, respectively. Phylogenomic analysis suggested that Bacillus sp. B48 and Bacillus sp. B140 are closely related to B. cereus and B. thuringiensis, respectively. Whole genome alignment of Bacillus sp. B48, Bacillus sp. B140, mesophilic strain B. cereus ATCC14579, and thermophilic strain B. cytotoxicus NVH 391-98 using the Mauve program revealed the presence of numerous homologous regions including genes responsible for heat shock in the dnaK gene cluster. However, the presence of a DUF4253 domain-containing protein was observed only in the genome of B. cereus ATCC14579 while the intracellular protease PfpI family was present only in the chromosome of B. cytotoxicus NVH 391-98. In addition, prophage Clp protease-like proteins were found in the genomes of both Bacillus sp. B48 and Bacillus sp. B140 but not in the genome of B. cereus ATCC14579. The genomic profiles of Bacillus sp. isolates were identified by using whole genome analysis especially those relating to heat-responsive gene clusters. The findings presented in this study lay the foundations for subsequent studies to reveal further insights into the molecular mechanisms of Bacillus species in terms of heat resistance mechanisms.

Determination of Enteric Bacteria at Microbiologically Risky Points by Multiplex Polymerase Chain Reaction

  • Mahir Gulec;Bilal Bakir;Recai Ogur;Tekbas, Omer-Faruk
    • Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.327-330
    • /
    • 2002
  • The purpose of this research was to test multiplex polymerase chain reaction in investigating the microbiological quality of the risky surfaces in social living places of a military base where over 15 thousand people live together. In 22 samples of 99, there were no bacteria. Only four of the samples contained Shigella, and one of them contained Salmonella, but 77 of the samples contained thermotolerant coliform organisms. There was no statistically significant difference among the microbiological quality of different sites and different equipment surfaces (p>0.05).