• Title/Summary/Keyword: thermospray LC/MS

Search Result 2, Processing Time 0.013 seconds

Analysis of Ginsenosides by Thermospray LC/MS (열분무 LC/MS에 의한 인삼사포닌의 분석)

  • Park, Man-Ki;Park, Jeong-Hill;Hwang, Gwi-Seo;Lee, Mi-Young;Park, In-Jeong
    • Journal of Ginseng Research
    • /
    • v.19 no.2
    • /
    • pp.134-137
    • /
    • 1995
  • Ginseng saponins were analyzed by thermospray (TSP) LCMS method using ODS column and with acetonitrile/ammonium acetate solution. Optimal condition for TSP Lchfs was found as follows: capillary temperature: 33$0^{\circ}C$ repelled voltage: 200 V, and concentration of ammonium acetate: 0. 05 M. Panaxadiol and panaxatriol type saponins showed characteristic fragment ions. The calibration curve of ginseng saponin showed good linearity with a correlation coefficient of 0.99. Detection limits using selected ion monitoring (SIM) technique were improved by 10~200 times compared to conventional HPLCnnr detection method.

  • PDF

A Study on the Analysis of Methylprednisolone Acetate and its Metabolites in Rat Urine by LC/MS (LC/MS를 이용한 뇨중에서의 Methylprednisolone Acetate 및 그 대사물질 분석에 관한 연구)

  • Park, Song-Ja;Pyo, Hee Soo;Kim, Yun Je;Park, Seong Soo;Park, Jongsei
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.139-159
    • /
    • 1995
  • Positive ion mass spectra of some corticosteroids were obtained by using liquid chromatography-mass spectrometry(LC-MS). The base peak of each compound showed the protonated molecular ion [$MH^+$], ammonium adduct ion [${MNH_4}^+$] or [$MH^+-60$] ion according to its chemical structure and other characteristic mass ions were [$MH^+-18$], [${MNH_4}^+-18$] and so on. Several rat urinary metabolites of methylprednisolone acetate after the oral administration were detected by the thermospray LC-MS. The identified major metabolites were 20-hydroxymethylprednisolone(20-HMP), methylprednisolone(MP) and methylprednisone(11-KMP), which were supposed to be formed by deacetylation at the position of C-21, reduction at C-20, oxidation at C-11, or due to the bond cleavage between C-17 and C-20.

  • PDF