• 제목/요약/키워드: thermospheric density

검색결과 8건 처리시간 0.026초

Sources of the High-Latitude Thermospheric Neutral Mass Density Variations

  • Kwak, Young-Sil;Richmond, Arthur;Deng, Yue;Ahn, Byung-Ho;Cho, Kyung-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권4호
    • /
    • pp.329-335
    • /
    • 2010
  • We investigate the sources of the variation of the high-latitude thermospheric neutral mass density depending on the interplanetary magnetic field (IMF) conditions. For this purpose, we have carried out the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) simulations for various IMF conditions under summer condition in the southern hemisphere. The NCAR-TIEGCM is combined with a new empirical model that provides a forcing to the thermosphere in high latitudes. The difference of the high-latitude thermospheric neutral mass density (subtraction of the values for zero IMF condition from the values for non-zero IMF conditions) shows a dependence on the IMF condition: For negative $B_y$ condition, there are significantly enhanced difference densities in the dusk sector and around midnight. Under the positive-$B_y$ condition, there is a decrease in the early morning hours including the dawn side poleward of $-70^{\circ}$. For negative $B_z$, the difference of the thermospheric densities shows a strong enhancement in the cusp region and around midnight, but decreases in the dawn sector. In the dusk sector, those values are relatively larger than those in the dawn sector. The density difference under positive-$B_z$ condition shows decreases generally. The density difference is more significant under negative-$B_z$ condition than under positive-$B_z$ condition. The dependence of the density difference on the IMF conditions in high latitudes, especially, in the dawn and dusk sectors can be explained by the effect of thermospheric winds that are associated with the ionospheric convection and vary following the direction of the IMF. In auroral and cusp regions, heating of thermosphere by ionospheric currents and/or auroral particle precipitation can be also the source of the dependence of the density difference on the IMF conditions.

Extreme Enhancements in GPS TEC on 8 and 10 November 2004

  • Chung, Jong-Kyun;Jee, Gun-Hwa;Kim, Eo-Jin;Kim, Yong-Ha;Cho, Jung-Ho
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2010년도 한국우주과학회보 제19권1호
    • /
    • pp.30.2-30.2
    • /
    • 2010
  • It is a mistaken impression that the midlatitude ionosphere was a very stable region with well-known morphology and physical mechanism. However, the large disturbances of midlatitude ionospheric contents in response to global thermospheric changes during geomagnetic storms are reported in recent studies using global GPS TEC map and space-born thermospheric UV images, and its importance get higher with the increasing application areas of space navigation systems and radio communication which are mostly used in the midlatitudes. Positive and negative storm phases are used to describe increase and decrease of ionospheric electron density. Negative storms result generally from the enhanced loss rate of electron density according to the neutral composition changes which are initiated by Joule heating in high-latitudes during geomagnetic storms. In contrast, positive ionospheric storms have not been well understood because of rare measurements to explain the mechanisms. The large enhancements of ground-based GPS TEC in Korea were observed on 8 and 10 November 2004. The positive ionospheric storm was continued except for dawn on 8 November, and its maximum value is ~65 TECU of ~3 times compared with the monthly mean TEC values. The other positive phase on 10 November begin to occur in day sector and lasted for more than 6 hours. The O/N2 ratios from GUVI/TIMED satellite show ~1.2 in northern hemisphere and ~0.3 in southern hemisphere of the northeast Asian sector on 8 and 10 November. We suggest the asymmetric features of O/N2 ratios in the Northeast Asian sector may play an important role in the measured GPS TEC enhancements in Korea because global thermospheric wind circulation can globally change the chemical composition during geomagnetic storms.

  • PDF

Nonmigrating tidal characteristics in the thermospheric neutral mass density

  • 곽영실;길효섭;이우경;오성준;양태용
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.125.1-125.1
    • /
    • 2012
  • The wave number 4 (wave-4) and wave number 3 (wave-3) longitudinal structures in the thermospheric neutral mass density are understood as tidal structures driven by diurnal eastward-propagating zonal wave number 3 (DE3) and wave number 2 (DE2) tides, respectively. However, those structures have been identified using data from limited time periods, and the consistency and recurrence of those structures have not yet been examined using long-term observation data. We examine the persistence of those structures by analyzing the neutral mass density data for the years 2001-2008 taken by the CHAllenging Minisatellite Payload (CHAMP) satellite. During years of low solar activity, the amplitude of the wave-4 structure is pronounced during August and September, and the wave-4 phase shows a consistent eastward phase progression of $90^{\circ}$ within 24 h local time in different months and years. During years of high solar activity, the wave-4 amplitude is small and does not show a distinctive annual pattern, but the tendency of the eastward phase shift at a rate of $90^{\circ}$/24 h exists. Thus the DE3 signature in the wave-4 structure is considered as a persistent feature. The wave-3 structure is a weak feature in most months and years. The amplitude and phase of the wave-3 structure do not show a notable solar cycle dependence. Among the contributing tidal modes to the wave-3 structure, the DE2 amplitude is most pronounced. This result may suggest that the DE2 signature, although it is a weak signature, is a perceivable persistent feature in the thermosphere.

  • PDF

THE EFFECTS OF PLANETARY ROTATION ON THE EXOSPHERIC DENSITY DISTRIBUTIONS OF THE EARTH AND MARS

  • KIM YONG HA;SON SUJEONG
    • 천문학회지
    • /
    • 제33권2호
    • /
    • pp.127-135
    • /
    • 2000
  • We investigate the effects of planetary rotation on the exospheres of the earth and Mars with simple collisionless models. We develope a numerical code that computes exospheric densities by integrating velocity functions at the exobase with a 10 point Gauss method. It is assumed in the model that atoms above the exobase altitude move collisionlessly on an orbit under the planet's gravity. Temperatures and densities at the exobase over the globe are adopted from MSIS-86 for the earth and from Bougher et al's MTGCM for Mars. For both the earth and Mars, the rotation affects the exospheric density distribution significantly in two ways: (1) the variation of the exospheric density distribution is shifted toward the rotational direction with respect to the variation at the exobase, (2) the exospheric densities in general increase over the non-rotating case. We find that the rotational effects are more significant for lower thermospheric temperatures. Both the enhancement of densities and shift of the exospheric distribution due to rotation have not been considered in previous models of Martian exosphere. Our non-spherical distribution with the rotational effects should contribute to refining the hot oxygen corona models of Mars which so far assume simple geometry. Our model will also help in analyzing exospheric data to be measured by the upcoming Nozomi mission to Mars.

  • PDF

Steep plasma density gradient at middle latitudes observed by DMSP and TOPEX during the magnetic storm of 11-12 April 2001

  • Park, Sa-Rah;Kim, Khan-Hyuk;Kil, Hyo-Sub;Jee, Geon-Hwa;Lee, Dong-Hun;Goldstein, J.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.26.3-27
    • /
    • 2011
  • Formation of a steep plasma density gradient in the middle-latitude ionosphere during geomagnetic storms and the latitudinal migration of its location depending on the storm phase are suggested to be associated with the ionospheric signature of the plasmapause. We test this idea by using the satellite and ground observation data during the 11 April 2001 storm. The locations of the steep plasma density gradient identified by TOPEX/Poseidon (2001 LT) and DMSP (1800 and 2130 LT) satellites coincide with the ionospheric footprints of the plasmapause identified by the IMAGE satellite. This observation may support the dependence of the middle-latitude plasma density gradient location on the plasmapause motion, but does not explain why the steep density gradient whose morphology is largely different from the morphology of the middle-latitude ionization trough during quiet period is formed in association with the plasmapause. The ionospheric disturbances in the total electron content (TEC) maps shows that the steep TEC gradient is formed at the boundary of the positive ionospheric storm in low-middle latitudes and the negative ionospheric storm in middle-high latitudes. We interpret that the thermospheric neutral composition disturbance in the dayside is confined within the middle-high latitude ionospheric convection zone. The neutral composition latitudes and, therefore, the locations of the steep plasma density gradient coincide with the footprints of the plasmapause. The TEC maps show that the appearance of the steep plasma density gradient in the pre-midnight sector during the recovery phase is related to the co-rotation of the gradient that is created during the main phase.

  • PDF