• Title/Summary/Keyword: thermoremanent magnetization

Search Result 9, Processing Time 0.03 seconds

Magnetic Properties of TmFe2O4

  • Kim, J.;Lee, B.W.
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.29-31
    • /
    • 2010
  • We studied the magnetic properties of $TmFe_2O_4$. The magnetization measurements revealed the magnetic ordering of Fe spins at around 240 K. The difference between zero-field-cooled (ZFC) and field-cooled (FC) magnetization was close to the thermoremanent magnetization (TRM), indicating the glass behavior exhibited by this material.

Magnetic Mineral Identification in Meteorites (잔류자화비를 이용한 운석의 자성광물 판별)

  • Kim, In-Ho;Yu, Yong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • Meteorites are extraterrestrial solid rock fragments that fell from the outer space. Investigating mineral magnetic properties of the Meteorites is essential in understanding the evolution of planets and asteroids in the Solar System. In particular, magnetic characterization of magnetic mineral can provide constraints on the progress of differentiation in ancient planetary bodies. In the present study, ratio of thermoremanent magnetization (TRM) over saturation isothermal remanent magnetization (SIRM) was applied to diagnose the magnetic minerals in meteorites and igneous rocks. Distinctive classification of TRM/SIRM suggests that kamacite, tetrataenite, magnetite, and (Cr,Ti)-rich iron oxide are responsible for the magnetization of H5 Richardton, LL6 St. Severin, ALH84001, and DaG476, respectively. The TRM/SIRM ratio could be an efficient tool in identifying magnetic minerals especially when rocks or meteorites contain unstable material under heating.

Irreversibility and Thermoremanent Magnetization in Y0.8Sr0.2MnO3

  • Ismail, Agustina;Yansen, W.;Rajagukguk, R.;Kwon, Y.M.;Kim, J.;Lee, B.W.
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.168-171
    • /
    • 2012
  • Irreversible magnetization between the zero-field-cooled (ZFC) and field-cooled (FC) states in $Y_{1-x}Sr_xMnO_3$ (x=0 and 0.2) was investigated. $YMnO_3$ and $Y_{0.8}Sr_{0.2}MnO_3$ have a hexagonal structure and the lattice parameter a decreases from 7.4408 ${\AA}$ to 7.4327 ${\AA}$ while c increases from 12.2244 ${\AA}$ to 12.2287 ${\AA}$ for $YMnO_3$ and $Y_{0.8}Sr_{0.2}MnO_3$, respectively. An anomaly is observed at around 74 K in ZFC and FC magnetization measurements for $YMnO_3$, whereas in $Y_{0.8}Sr_{0.2}MnO_3$ the ${\sigma}_{ZFC}$ and ${\sigma}_{FC}$ are split at low temperature, indicating glass-like behavior.

Effect of Cooling-rate Dependence on the Magnitude of Thermoremanent Magnetization (냉각률이 자화에 미치는 영향)

  • Yu, Yong-Jae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2010.10a
    • /
    • pp.43-45
    • /
    • 2010
  • Acquisition of thermoremanent magnetization follows a Boltzman statistics, as such long reaction time in a slowly cooled environment allows more chance to align individual magnetic particles parallel to the external magnetic field. Hence it has been proposed that the slowly cooled rocks often acquire stronger magnetization than the rapidly cooled ones. Such a proposition has been experimentally validated to be true for the fine-grained magnetite- or titanomagnetite bearing basaltic rocks collected from the mid-ocean ridges. However, the effect of cooling-rate on the remanence intensity appears to be insignificant for nominal grain ranges.

  • PDF

Magnetic Properties of Polycrystalline ErFe2O4 (ErFe2O4 다결정체 시료의 자기적 특성 연구)

  • Kim, J.;Lee, B.W.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.217-220
    • /
    • 2008
  • We have investigated the magnetic properties of $ErFe_2O_4$. Stoichiometric polycrystalline sample of $ErFe_2O_4$ was prepared by solid-state reaction method in a stream of CO/$CO_2$ gas. The X-ray power diffraction pattern shows that the diffraction peaks are indexed with respect to the rhombohedral structure with a space group of R3m. The temperature dependent magnetization for $ErFe_2O_4$ shows two-step phase transitions at about 220 and 250 K. The transition at 250 K is an antiferromagnetic transition and that at 220 K is a structural transition.

Structural and Magnetic Properties of the Brownmillerite $Ca_2Al_xFe_{2-x}O_5$ System

  • 김귀야;로권선;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.934-938
    • /
    • 1995
  • A series of solid solutions in the Ca2AlxFe2-xO5 (x=0.00, 0.50, 0.66, 1.00 and 1.34) system with brownmillerite structure has been synthesized at 1100 ℃ under an atmospheric air pressure. The solid solutions are analysed by powder x-ray diffraction analysis, Mohr salt titration, thermal analysis, and Mossbauer spectroscopic analysis. The x-ray diffraction analysis assigns the compositions of x=0.00 and 0.50 to the space group Pcmn and those of x=0.66, 1.00, and 1.34 to the Ibm2. Mo&ssbauer spectra have shown the coordination state and disordering of Al3+ and Fe3+ ions. The substituting preference of Al3+ ions for the tetrahedral site decreases with increasing x value. Magnetic susceptibility of the system has been measured in the temperature range of 5 K to 900 K. The solid solutions of the compositions of x=0.00, 0.50 and 0.66 have shown a thermal hysteresis and the thermoremanent magnetization gap decreases with increasing x value in the above systems. However the compositions of x=1.00 and 1.34 do not show the hysteresis. The exchange integral is calculated from Fe3+ ion occupancy ratio. The integral decreases with x value and thus the magnetic transition temperature decreases with the increasing x value.

Magnetic Stability of Hematite on Low-temperature Magnetic Phase Transition (저온변환에 따른 적철석의 자화안정도)

  • Jang, Sujin;Yu, Yongjae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.19-25
    • /
    • 2013
  • Recent progress in Martian exploration identified hematite as the major candidate for the strong magnetic anomalies observed in Martian lithosphere. In the present study, grain-size dependence of thermoremanent magnetization and low-temperature stability of room-temperature saturation isothermal remanent magnetization (RTSIRM) were monitored using synthetic hematites. For hematite, the antiferromagnetic spin configuration is re-arranged from being perpendicular to the c-axis to be parallel to the c-axis below the Morin transition ($=T_M$). A large fraction of RTSIRM is demagnetized at $T_M$ (= 260 K) during zero-field cooling from 300 K to 10 K. About 37% of the initial RTSIRM is recovered on warming from 10 K to 300 K. Shallow Martian subsurface at 1~2 km depth would experience low-temperature cooling-warming of $T_M$ because average Martian surficial temperature is about 220 K. However in most Martian lithosphere whose temperatures are higher than 260 K, the very stable magnetic memory of hematite could be a contributor to Martian magnetic anomalies.

Archaeomagnetic Study of Historic Sites in Chungcheong Region Regional Difference of Geomagnetic Field and Issues on Reliability of Data (충청지역 유적에 대한 고고지자기학적 연구 지자기의 지역적인 차이와 데이터의 신뢰도 문제를 중심으로)

  • Sung, Hyong Mi
    • Korean Journal of Heritage: History & Science
    • /
    • v.41 no.1
    • /
    • pp.21-33
    • /
    • 2008
  • In this study, the researcher examined archaeomagnetic secular variation of Chungcheong Region through measured data of archaeomagnet obtained from 34 relics, which discovered in the baked earth from varied historic sites within the region. Furthermore, the researcher closely reviewed regional differences of geomagnetic field in the domestic territory. Reviewing the comparison between the measured data of archaeomagnet in Chungcheong Region and the archaeomagnetic secular variation of Japan, which has difference in distance, it reveals a noticeable change in declination by tilting more than 10 degree toward East in the year of about A.D. 300, although the feature of whole variation is quite similar. In other period of times, it was confirmed that the regional differences of geomagnetic field in which the magnetic dip became deeper to some degree, and the declination was tilted westward a little bit. Such patterns do not differ significantly from the pattern of entire archaeomagnetic secular variation of our country, and even in the direct comparison to the data of Chungcheong Region, the distinct regional difference in both periods before and after Christian era was not confirmed. The fact may become clearer that, when the volume of the measured data of archaeomagnet increases further, and when more data connected with varied time period are filled, the problem such as deviation of the measurement period of archaeomagnet caused by the regional difference of geomagnetic field would not be worrisome issue, especially in Korean territory, judging from the measured data of archaeomagnet of historic relics in Chungcheong Region. Besides, as great efforts are being exerted in order to get the most reliable measured data as much as possible in taking both samples and measurement, it is thought that there would be no problem not only in the issue of deviation of the measurement period involving with the measured data of archeomagnet, but also in the aspect of reliability of data.