• Title/Summary/Keyword: thermophoretic effect

Search Result 19, Processing Time 0.023 seconds

A study of thermophoretic particle deposition in a particle laden stagnation flow including the effect of radiative heat transfer (정체점 입자유동에서 복사열전달을 고려한 열영동 입자부착 연구)

  • Jeong, Chang-Hun;Lee, Gong-Hun;Choe, Man-Su;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1624-1638
    • /
    • 1996
  • A study of thermophoretic particle deposition has been carried out for a particle laden stagnation flow considering the effect of radiative heat transfer. Energy, concentration and radiative transfer equations are all coupled and have been solved iteratively assuming that absorption and scattering coefficients were proportional to the local concentration of particles. Radiative heat transfer was shown to strongly affect the profiles of temperature and particle concentration. e. g., radiation increases the thickness of thermal boundary layer and wall temperature gradients significantly. As the wall temperature gradients increase, the particle concentration at the wall decreases due to thermophoretic particle transport. The deposition rate that is thermophoretic velocity times particle concentration at the wall decreases as the effects of radiation increases. The effects of optical thickness, conduction to radiation parameter and wall emissivity have been determined. The effects of anisotropic scattering are shown as insignificant.

Thermophoretic deposition of soot particles in laminar diffusion flame along a solid wall in microgravity (미소중력환경에서의 고체벽면근방 층류확산염내 매연입자의 열영동 부착)

  • Choi, Jae-Hyuk;Osamu, Fujita;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.19-24
    • /
    • 2007
  • The deposition behavior of soot particles in a diffusion flame along a solid wall was examined experimentally by getting rid of the effect of natural convection utilizing microgravity environment. The microgravity environment was realized by using a drop tower facility. The fuel for the flame was an ethylene ($C_2H_4$) and the surrounding oxygen concentration 35% with the surrounding air velocity of $V_a$=2.5, 5, and 10 cm/s. Laser extinction method was adopted to measure the soot volume fraction distribution between the flame and burner wall. The results show that observation of soot deposition in normal flame was difficult from buoyancy and the relative position of flame and solid surface changes with time. The soot particle distribution region moves closer to the surface of the wall as the surrounding air velocity is increased. And the experiments determined the trace of the maximum soot concentration line. It was found that the distance between soot line and flame line is around 5 mm. That is, the soot particle near the flame zone tends to move away from flame zone because of thermophoretic force and to concentrate at a certain narrow area inside of the flame, finally, to adhere the solid wall.

  • PDF

Numerical Study on the Thermophoretic Deposition Characteristics of Soot Particles for Wall Temperature of Burner and Surrounding Air Temperature in Combustion Duct (버너의 벽면온도와 연소실내 주위공기온도에 따른 매연입자의 열영동 부착 특성에 관한 수치적 연구)

  • Choi, Jae-Hyuk;Han, Won-Hui;Yoon, Doo-Ho;Yoon, Seok-Hun;Chung, Suk-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • The characteristics of soot deposition on the cold wall in laminar diffusion flames have been numerically analyzed with a two-dimension with the FDS (Fire Dynamics Simulator). In particular, the effects of surrounding air temperature and wall temperature have been discussed. The fuel for the flame is an ethylene ($C_2H_4$). The surrounding oxygen concentration is 35%. Surrounding air temperatures are 300K, 600K, 900K and 1200K. Wall temperatures are 300K, 600K and 1200K. The soot deposition length defined as the relative approach distance to the wall per a given axial distance is newly introduced as a parameter to evaluate the soot deposition tendency on the wall. The result shows that soot deposition length is increased with increasing the surrounding air temperatures and with decreasing the wall temperature. And the numerical results led to the conclusion that it is essential to consider the thermophoretic effect for understanding the soot deposition on the cold wall properly.

Three-dimensional analysis of the thermophoretic particle deposition in the OVD process (외부증착공정에서의 열영동에 의한 입자부착에 관한 3차원 해석)

  • Hong, Gi-Hyeok;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.436-444
    • /
    • 1997
  • Three-dimensional conjugate heat transfer and particle deposition on a circular cylinder in the OVD process are numerically investigated. Flow and temperature fields are obtained by an iterative method, and thermophoretic particle deposition is simulated. Effects of the heat conduction in the cylinder, the rotation speed of the cylinder, and the traversing speed of torch on the deposition are studied. Effects of variable properties are also included. As the conductivity of the cylinder decreases, particle deposition rate and deposition efficiency greatly decrease due to the reduced temperature gradient. The rotation of the cylinder has no significant effect on the deposition due to the small diameter of the cylinder and low speed of rotation. Since the increase of the torch speed keeps the surface low temperature, the particle deposition increases with the traversing speed.

Thermophoretic Effect on Particle Deposition Toward a Horizontal Wafer (열영동력이 수평 웨이퍼상의 입자침착에 미치는 영향)

  • 배귀남;박승오;이춘식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.175-183
    • /
    • 1994
  • To investigate thermophoretic effect on particle deposition, average deposition velocity toward a horizontal wafer surface in vertical airflow is measured keeping the wafer surface temperature different from the surrounding air temperature. In the present measurement, the temperature difference is maintained in the range from -10 to $4^{\circ}$ C Polystyrene latex (PSL) spheres of diameter between 0.3 and 0.8 .mu.m are used for the experiment. The number of particles deposited on a wafer surface is estimated from the measurements using a wafer surface scanner (PMS SAS-3600). Experimental data are compared with prediction model results.

Analysis of Particle Deposition onto a Heated or Cooled, Horizontal Free-Standing Wafer Surface (가열 또는 냉각되는 수평웨이퍼 표면으로의 입자침착에 관한 해석)

  • 유경훈;오명도;명현국
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1319-1332
    • /
    • 1995
  • Numerical analysis was performed to characterize the particle deposition behavior on a horizontal free-standing wafer with thermophoretic effect under the turbulent flow field. A low Reynolds number k-.epsilon. turbulence model was used to analyze the turbulent flow field around the wafer, and the temperature field for the calculation of the thermophoretic effect was predicted from the energy equation introducing the eddy diffusivity concept. The deposition mechanisms considered were convection, diffusion, sedimentation, turbulence and thermophoresis. For both the upper and lower surfaces of the wafer, the averaged particle deposition velocities and their radial distributions were calculated and compared with the laminar flow results and available experimental data. It was shown by the calculated averaged particle deposition velocities on the upper surface of the wafer that the deposition-free zone, where the deposition velocite is lower than 10$^{-5}$ cm/s, exists between 0.096 .mu.m and 1.6 .mu.m through the influence of thermophoresis with positive temperature difference of 10 K between the wafer and the ambient air. As for the calsulated local deposition velocities, for small particle sizes d$_{p}$<0.05 .mu.m, the deposition velocity is higher at the center of the wafer than at the wafer edge, whereas for particle size of d$_{p}$ = 2.0 .mu.m the deposition takes place mainly on the inside area of the wafer. Finally, an approximate model for calculating the deposition velocities was recommended and the calculated deposition velocity results were compared with the present numerical solutions, those of Schmidt et al.'s model and the experimental data of Opiolka et al.. It is shown by the comparison that the results of the recommended model agree better with the numerical solutions and Opiolka et al.'s data than those of Schmidt's simple model.

In-situ Observation of Soot Deposition Behavior in a Diffusion Flame along Solid Wall by using Microgravity Environment (미소중력환경을 이용한 벽면근방 확산화염내 매연부착거동의 원위치 관찰)

  • Choi Jac-Hyuk;Fujita Osamu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.907-914
    • /
    • 2005
  • Experiments at the Japan Microgravity Center (JAMIC) have investigated the interaction between diffusion flames and solid surfaces Placed neat flames The fuel for the flames was $C_{2} H_{4}$ The surrounding oxygen concentration was 35$\%$ with surrounding air temperatures of $T_{a}$ : 300K. Especially, the effect of wall temperature on soot deposition from a diffusion flame Placed near the wall has been studied by utilizing microgravity environment, which can attain very stable flame along the wall. Cylindrical burner with fuel injection was adopted to obtain two dimensional soot distributions by laser extinction method. In the experiment two different wall temperatures. $T_{w}$=300, 800 K, were selected as test conditions The results showed that the soot distribution between flame and burner wall was strong1y affected by the wall temperature and soot deposition increases with decrease in wall temperature. The comparison among the values lot two different wall temperatures suggests that the change in thermophoretic effect is the most dominant factor to give the change in soot deposition characteristics.

Observation of Soot Behavior in Diffusion Flame according to Surrounding Air Velocity (분위기유속에 따른 확산화염내 매연거동파악)

  • Choi, Jae-Hyuk;Park, Won-Seok;Yoon, Seok-Hun;Oh, Cheol;Kim, Myoung-Hwan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.254-255
    • /
    • 2005
  • The effect of surrounding air velocity on the soot deposition process from a diffusion flame to a solid wall was investigated in a microgravity environment to attain in-situ observations of the process. An ethylene($C_2H_4$) diffusion flame was formed around a cylindrical rod burner in surrounding air velocity of $v_{air}$=2.5, 5, and 10 cm/s with oxygen concentration of 35 % and wall temperature of 300 K. Laser extinction was adopted to determine the soot volume fraction distribution between the flame and burner wall. The experimental results show that the soot particle distribution region moves closer to the surface of the wall with increasing surrounding air velocity. A numerical simulation was also performed to understand the motion of soot particles in the flame and the characteristics of the soot deposition to the wall. The results successfully predicted the differences in the motion of soot particles by different surrounding air velocity near the burner surface and are in good agreement with observed soot behavior in microgravity. A comparison of the calculations and experimental results led to the conclusion that a consideration of the thermophoretic effect is essential to understand the soot deposition on walls.

  • PDF

Soot Deposition Process in a Diffusion Flame to the Wall under Microgravity (미소중력환경하에서의 확산화염내 매연입자의 벽면부착 관찰)

  • Choi, Jae-Hyuk;Fujita, Osamu;Yoon, Suck-Hun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.87-92
    • /
    • 2005
  • Experiments at the Japan Microgravity Center(JAMIC) have investigated the interaction between diffusion flames and solid surfaces placed near flames. The fuel for the flames was $C_2H_4$. The surrounding oxygen concentration was 35% with temperatures of $T_a$=300. Especially, the effect of wall temperature on soot deposition from a diffusion flame placed near the wall has been studied by utilizing microgravity environment, which can attain very stable flame along the wall. Cylindrical burner with fuel injection was adopted to obtain two dimensional soot distributions by laser extinction method. In the experiment two different wall temperatures, $T_w$=300,800K, were selected as test conditions. The results showed that the soot distribution between flame and burner wall was strongly affected by the wall temperature and soot deposition increases with decrease in wall temperature. The comparison among the values for two different wall temperatures suggested that the change in thermophoretic effect is the most dominant factor to give the change in soot deposition characteristics.

  • PDF

Growth Characteristics of Silica Particles Using In situ Sampling from $H_2/O_2TEOS$ Diffusion Flame (수소/산소/TEOS 확산화염 중 직접포집을 이용한 실리카 입자의 성장특성에 관한 연구)

  • Jung, Chang-Hoon;Ahn, Kang-Ho;Choi, Man-Soo;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.404-409
    • /
    • 2000
  • Growth characteristics of silica particles have been studied experimentally using in situ sampling technique from $H_2/O_2TEOS$ diffusion flame with carefully devised sampling probe. Verification of sampling result was done through new method and effects of flame condition and TEOS flow rate on growth characteristics of silica particles were investigated. By comparing particles sampled by thermophoretic sampling in flame with those by collector sampling after probe, particles do not change before and after probe sampling, which was clearly proved from the fact that the result of TEM image analysis makes good agreement with that of SMPS measurement. As flame temperature increases, the effect of coalescence or sintering becomes important mechanism during growth of silica particles, resulting in canceling the effect of coagulation, which makes mean diameter of silica particles increase slowly. With increase in TEOS flow rate, the number concentration of generated silica particle increases but residence time of particles in flame decreases. As a result, there exists upper limit to which the diameter of silica particle increases under same flame condition.

  • PDF