• Title/Summary/Keyword: thermophilic aerobic digestion

Search Result 26, Processing Time 0.019 seconds

Waste treatment with the pilot scale ATAD and EGSB pig slurry management system followed by sequencing batch treatment

  • Lee, Young-Shin;Han, Gee-Bong
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.277-284
    • /
    • 2015
  • Experiments for highly concentrated contaminants in pig waste slurry were carried out for the feasibility test of a pilot-scale innovative process scheme of engaging autothermal thermophilic aerobic digestion (ATAD) and expended granular sludge bed (EGSB) followed by sequencing batch reactor (SBR) system. Contaminants in pig waste slurry such as organic substance, total nitrogen (TN), ammonia nitrogen and total phosphorus (TP) contents were successfully reduced in the system. Total volatile solids (TVS) and chemical oxygen demands (COD) for organic matter in the feed were 32.92 g/L and 42.55 g/L respectively, and they were reduced by about 98.7% and 99.2%, respectively in the system. The overall removal efficiencies for TN and ammonium nitrogen were found to be 98.1 and 98.5%, respectively. The overall removal efficiency for total phosphorus was also found to be 92.5%. Faecal coliform density was reduced to <$1.2{\times}10^4CFU/g$ total solids. Biogas and $CH_4$ were produced in the range of 0.39-0.85 and $0.25-0.62m^3/kg$ [VS removed], respectively. The biogas produced in the system comprised of $295{\pm}26ppm$ (v/v) [$H_2S$].

Valuable Organic Liquid Fertilizer Manufacturing through $TAO^{TM}$ Process for Swine Manure Treatment

  • Lee, Myung-Gyu;Cha, Gi-Cheol
    • Journal of Animal Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.45-56
    • /
    • 2003
  • $TAO^{TM}$ System is an auto-heated thermophilic aerated digestion process using a proprietary microbe called as a Phototropic Bacteria (PTB). High metabolic activity results in heat generation, which enables to produce a pathogen-free and digested liquid fertilizer at short retention times. TAO$^{TM}$ system has been developed to reduce a manure volume and convert into the liquid fertilizer using swine manure since 1992. About 100 units have been installed and operated in Korean swine farms so far. TAO$^{TM}$ system consists of a reactor vessel and ejector-type aeration pumps and foam removers. The swine slurry manure enters into vessel with PTB and is mixed and aerated. The process is operated at detention times from 2 to 4 days and temperature of 55 to $65^{\circ}C$. Foams are occurred and broken down by foam removers to evaporate water contents. Generally, at least 30% of water content is evaporated, 99% of volatile fatty acids caused an odor are removed and pathogen destruction is excellent with fecal coliform, rotavirus and salmonella below detection limits. The effluent from TAO$^{TM}$ system, called as the "TAO EFFLUX", is screened and has superb properties as a fertilizer. Normally N-P-K contents of screened TAO Efflux are 4.7 g/L, 0.375 g/L and 2.8 g/L respectively. The fertilizer effect of TAO EFFLUX compared to chemical fertilizer has been demonstrated and studied with various crops such as rice, potato, cabbage, pumpkin, green pepper, parsley, cucumber and apple. Generally it has better fertilizer effects and excellent soil fertility improvement effects. Moreover, the TAO EFFLUX is concentrated through membrane technology without fouling problems for a cost saving of long distance transportation and a commercialization (crop nutrient commodity) to a gardening market, for example.

  • PDF

Sewage Sludge Treatment with Internal Recirculation and Diverse Pre-treatment Methods Using Combined Digestion Process (혼합 소화공정에서 내부반송과 다양한 전처리를 통한 하수 슬러지 처리)

  • Ha, Jeong Hyub;Choi, Suk Soon;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.613-619
    • /
    • 2018
  • In this study, various influent sludge pre-treatment methods and the internal recirculation of thickened sludge from effluents using a liquid/solid separation unit were adopted to investigate their effects on the sludge digestion and methane production in a combined mesophilic anaerobic and thermophilic aerobic sludge digestion process. A lab-scale combined sludge digestion process was operated during 5 phases using different feed sludge pre-treatment strategies. In phase 1, the feed sludge was pre-treated with a thermal-alkaline method. In contrast, in phases 2, 3 and 4, the internal recirculation of thickened sludge from the effluent and thermal-alkaline, thermal, and alkaline pre-treatment (7 days) were applied to the combined process. In phase 5, the raw sludge without any pre-treatment was used to the combined process. With the feed sludge pre-treatment and internal recirculation, the experimental results indicated that the volatile suspended solid (VSS) removal was drastically increased from phases 1 to 4. Also, the methane production rate with the thermal-alkaline pre-treatment and internal recirculation was significantly improved, showing an increment to 285 mL/L/day in phase 2. Meanwhile, the VSS removal and methane production in phase 5 were greatly decreased when the raw sludge without any pre-treatment was applied to the combined process. Considering all together, it was concluded that the combined process with the thickened sludge recirculation and thermal-alkaline pre-treatment can be successfully employed for the highly efficient sewage sludge reduction and methane gas production.

A Study on the Removal of Nitrogen and Phosphorus by Operation Mode for Livestock Wastewater Treatment Post-process Using SBR (축산폐수의 후처리공정으로서 SBR 적용시 운전인자에 따른 질소와 인의 제거특성에 관한 연구)

  • Choi, Gun-Youl;Lee, Young-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.214-219
    • /
    • 2009
  • This study examined the removal efficiency of the nitrogen and phosphorus in order to compensate for the combined process of ATAD(Autothermal Thermophilic Aaerobic Digestion) and EGSB(Expended Granular Sludge Bed), which are treatment methods for livestock wastewater, by introducing SBR(Sequencing Batch Reactor) as post-treatment process. The analysis on the treatment efficiency of each operation mode showed that, in the case of T-N, the treatment efficiency were 67.1% and 74.2% for Run-1 and Run-2, respectively, and in the case of T-P, the values were 71.2 and 74.1, respectively, which are indicating that the treatment efficacy is higher in the condition of Run-1, in which the time period of Anoxic and Aerobic segments were increased. In addition, the result of analyzing removal characteristics of nitrogen and phosphorus by Influx load showed that removal efficiency of nitrogen was better in the case of high influx load than in the case of low influx load. Regardless of Influx load, phosphorus showed constant influx concentration, so that removal efficiency of phosphorus was influenced littler by Influx load than that of nitrogen. This study also fed methanol as an external carbon source and performed experiment to induce denitrification under anoxic condition by using nitrate among nitrogen compounds of SBR reactor, and the results showed that intermittent feeding was more effective in Nitrogen Removal than composite feeding.

Pig slurry treatment by the pilot scale hybrid multi-stage unit system (HMUS) followed by sequencing batch reactor (SBR) (HMUS와 SBR 반응조를 이용한 축분처리에 관한 연구)

  • Lee, Young-Shin;Han, Gee-Bong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2013
  • Experiments in a pilot-scale hybrid multi-stage unit system (HMUS) combination of ATAD and EGSB followed by SBR process for pig slurry treatment were conducted to demonstrate the feasibility of using autothermal thermophilic aerobic digestion (ATAD) and expended granular sludge bed (EGSB) followed by sequencing batch reactor (SBR) system. Contaminants in pig slurry with high organic matter, nitrogen (N) and phosphorus (P) content were completely removed in the combined process. The highest removal rate for CODcr among contaminants in the feed pig slurry was attained by about 43.3% in ATAD unit process. Also TS removal rate of 96.5% was attained and the highest in the next coagulation unit process. The highest removal rate of CODcr under operating parameter conditions of OLR(organic loading rate), 3-6Kg $COD/m^3{\cdot}day$ and line velocity, 1.5-4m/h was earned at 3days of HRT. The disinfection of pathogens was effective at 50,000mg/L of TS in ATAD unit process. Biogas production per organic removal was $2.3{\sim}8.5m^3/kgTS{\cdot}d$ (average $5.2m^3/kgTS{\cdot}d$) in EGSB unit process. The average removal rates of CODcr 71.7%, TS 64.1%, TN 45.9%, and TP 50.4% were earned in the intermittent aeration SBR unit process.

Evaluation of Odors and Odorous Compounds from Liquid Animal Manure Treated with Different Methods and Their Application to Soils (액상 가축분뇨의 처리 및 토양환원에 따른 악취 및 악취물질의 평가)

  • 고한종;최홍림;김기연;이용기;김치년
    • Journal of Animal Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.453-466
    • /
    • 2006
  • To comply with stricter regulations provoked by increasing odor nuisance, it is imperative to practice effective odor control for sustainable livestock production. This study was conducted to assess odor and odorous compounds emitted from liquid animal manure with different treatment methods such as Fresh Manure(without treatment, FM), Anaerobic Digestion(AD) and Thermophilic Aerobic Digestion(TAD) and their application to soil. Air samples were collected at the headspace of liquid manure, upland and paddy soil, and analyzed for odor intensity and offensiveness using an olfactometry; odor concentration index using odor analyser; nitrogen-containing compound such as ammonia(NH3) using fluorescence method; and sulfur containing compounds such as hydrogen sulfide(H2S), methyl mercaptan(MeSH), dimethyl sulfide(DMS) and dimethyl disulfide(DMDS) using gas chromatography-pulsed flame photometric detector, respectively. Odor intensity, offensiveness and concentration index from TAD liquid manure was statistically lower than those from FM and AD(p<0.01). Mean concentrations of H2S, MeSH, DMS, DMDS and NH3 were 65.93ppb, 18.55ppb, 5.26ppb, 0.33ppb and 10.57ppm for liquid manure with AD; and 5.15ppb, 0.97ppb, 0.80ppb, 0.56ppb and 1.34ppm for liquid manure with TAD, respectively. More than 60% of malodorous compounds related to nitrogen and sulfur were removed by heterotrophic microorganisms during TAD treatment. When liquid manure was applied onto upland and paddy soil, NH3 removal efficiencies ranged from 51 to 94% and 22 to 91% for AD and TAD liquid manure, respectively. The above results show that liquid manure with TAD is superior to AD and FM with respect to the odor reduction and odor problem caused by land applied liquid manure is directly related to the degree of odor generated by the manure treatment method.