• 제목/요약/키워드: thermomechanical processing

검색결과 34건 처리시간 0.026초

Effect of Grain Size on the Thermomechanical Properties of $Al_2 TiO_5$ Ceramics

  • Kim, Ik-Jin;Kweon, Oh-Seong;Ko, Young-Shin;Constatin Zografou
    • The Korean Journal of Ceramics
    • /
    • 제2권4호
    • /
    • pp.246-250
    • /
    • 1996
  • The thermomechanical properties of materials from the system Al2O3-SiO2-TiO2(Tialite-Mullite) were investigated by correlating the thermal expansion anisotroypy, flexural strength and Young's modulus with grain size and atructural microcracking during cooling. Microcracking temperatures were determined by measuring the hysteresis of the thermal expansion anisotropy with dilatometry. Single phase Aluminium Titanate is a low strength material, while composites with more than 10 vol% mullite as second phase enhance the Young's modulus, thermal expansion coefficient and room temperature strength.

  • PDF

INTERGRANULAR CORROSION-RESISTANT STAINLESS STEEL BY GRAIN BOUNDARY ENGINEERING

  • Hiroyuki Kokawa;Masayuki Shimada;Wang, Zhan-Jie;Yutaka S. Sato
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.250-254
    • /
    • 2002
  • Intergranular corrosion of austenitic stainless steels is a conventional and momentous problem during welding and high temperature use. One of the major reasons for such intergranular corrosion is so-called sensitization, i.e., chromium depletion due to chromium carbide precipitation at grain boundaries. Conventional methods for preventing sensitization of austenitic stainless steels include reduction of carbon content in the material, stabilization of carbon atoms as non-chromium carbides by the addition of titanium, niobium or zirconium, local solution-heat-treatment by laser beam, etc. These methods, however, are not without drawbacks. Recent grain boundary structure studies have demonstrated that grain boundary phenomena strongly depend on the crystallographic nature and atomic structure of the grain boundary, and that grain boundaries with coincidence site lattices are immune to intergranular corrosion. The concept of "grain boundary design and control", which involves a desirable grain boundary character distribution, has been developed as grain boundary engineering. The feasibility of grain boundary engineering has been demonstrated mainly by thermomechanical treatments. In the present study, a thermomechanical treatment was tried to improve the resistance to the sensitization by grain boundary engineering. A type 304 austenitic stainless steel was pre-strained and heat-treated, and then sensitized, varying the parameters (pre-strain, temperature, time, etc.) during the thermomechanical treatment. The grain boundary character distribution was examined by orientation imaging microscopy. The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of coincidence-site-lattice boundaries indicated a maximum at a small strain. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanically-treated specimen than in the base material. An excellent intergranular corrosion resistance was obtained by a small strain annealing at a relatively low temperature for long time. The optimum parameters created a uniform distribution of a high frequency of coincidence site lattice boundaries in the specimen where corrosive random boundaries were isolated. The results suggest that the thermomechanical treatment can introduce low energy segments in the grain boundary network by annealing twins and can arrest the percolation of intergranular corrosion from the surface.

  • PDF

Al-Mg-Si 합금의 고온 소성 변형 거동 (Plastic Deformation Behavior of Al-Mg-Si Alloys at the Elevated Temperatures)

  • 권용남;이영선;이정환
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.27-32
    • /
    • 2004
  • Thermomechanical behavior of Al-Mg-Si alloys was studied to investigate the effect of microstructural features such as pre-existing substructure and distribution of particles on the deformation characteristics. The controlled compression tests were carried out to get the information on how the alloy responds to temperature, strain amount and strain rate. Then hot forging of Al-Mg-Si alloys carried out and analyzed by the comparison with the compression tests. Microstructural features after forging were discussed in terms of the thermomechanical response of Al-Mg-Si alloys. As already well mentioned, we found that the deformation of Al-Mg-Si at the elevated temperature brought the recovered structure on most conditions. In a certain time, however, abnormally large grains were found as a result of deformation assisted grain growth, which means that hot forging of Al-Mg-Si alloys could lead to a undesirable microstructural variation and the consequent mechanical properties such as fatigue strength.

On Some Changes in Polymer Blend Topological and Molecular Structures Resulted from Processing

  • Jurkowski, B.;Jurkowska, B.;Nah, C.
    • Elastomers and Composites
    • /
    • 제37권4호
    • /
    • pp.234-243
    • /
    • 2002
  • A general scheme of a rubber structure is proposed. Using the thermomechanical method(TMA), some changes in the molecular and topological structures for uncured and cured, and unfilled and filled rubbers during processing are shown. In our investigations as region it is understood a complex structure, which is expressed at the thermomechanical curve(TMC) as a zone differed from others in thermal expansion properties. This zone is between the noticed temperatures of relaxation transitions, usually on the level like those determined by DMTA at 1Hz. These regions, which shares, are not stable, and differ in molecular-weight distribution(MWD) of chain fragments between the junctions. Differences in dynamics of the formation of the molecular and topological structures of a vulcanizate are dependent on the rubber formulation, mixing technology and curing time. Some of characteristics of these regions correlate with mechanical properties of vulcanizates what is shown for NR rubbers containing ENR or CPE as a polymeric additive. It is well known that the state of order influences diffusivity of low-molecular substances into the polymer matrix. Because of this, the two topological amorphous regions should influence the distribution of the ingredients and resulting in rubber compounds' heterogeneity, and related properties of cured rubber. Investigation of this problem is expected to be, in the future, one of the essential factors in determining further improvement of polymeric materials properties by compounding with additives and in reprocessing of rubber scrap.

열기계적 분석법으로 측정된 레진 포뮬레이션의 경화 수축 특성 (Cure Shrinkage Characteristics of Resin Formulations by Thermomechanical Analysis)

  • 서안나;이종현
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.629-636
    • /
    • 2012
  • Volume shrinkage behavior accompanying the cure of resin formulations might be a critical factor when assembly processes using polymer materials are considered. In this study, cure shrinkage behavior with respect to resin formulation type and heating method was measured on sandwich structure samples by a thermomechanical analyzer (TMA). Quartz, used as a cover material for the sandwich structure, indicated the coefficient of thermal expansion close to $0ppm/^{\circ}C$. When a dynamic heating mode was conducted, a squeeze-out region and a cross-linking region for each resin formulation could be separated clearly with overlapping differential scanning calorimeter results on the TMA results. In addition, a cure shrinkage dominant region and a thermal expansion dominant region in the cross-linking region were distinguished. Consequently, the degree of cure at the initiation of the thermal expansion dominant region was successfully measured. Measurement of all resin formulations indicated the thermal expansion behavior exceeded cure shrinkage before full cure.

Effect of Strain Aging on Tensile Behavior and Properties of API X60, X70, and X80 Pipeline Steels

  • Lee, Sang-In;Lee, Seung-Yong;Lee, Seok Gyu;Jung, Hwan Gyo;Hwang, Byoungchul
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1221-1231
    • /
    • 2018
  • The effect of strain aging on tensile behavior and properties of API X60, X70, and X80 pipeline steels was investigated in this study. The API X60, X70, and X80 pipeline steels were fabricated by varying alloying elements and thermomechanical processing conditions. Although all the steels exhibited complex microstructure consisting of polygonal ferrite (PF), acicular ferrite, granular bainite (GB), bainitic ferrite (BF), and secondary phases, they had different fractions of microstructures depending on the alloying elements and thermomechanical processing conditions. The tensile test results revealed that yielding behavior steadily changed from continuous-type to discontinuous-type as aging temperature increases after 1% pre-strain. After pre-strain and thermal aging treatment in all the steels, the yield and tensile strengths, and yield ratio were increased, while the uniform elongation and work hardening exponent were decreased. In the case of the X80 steel, particularly, the decrease in uniform elongation was relatively small due to many mobile dislocations in PF, and the increase in yield ratio was the lowest because a large amount of harder microstructures such as GB, BF, and coarse secondary phases effectively enhanced work hardening.

가공열처리에 의한 고강도 Al-Cu-Li-Ag-Mg-Zr 합금의 기계적 성질 개선 (Improvement of Mechanical Properities in Al-Cu-Li-Ag-Mg-Zr Alloys by Thermomechanical Treatement)

  • 유정희;남궁일;이오연;김동건
    • 열처리공학회지
    • /
    • 제5권2호
    • /
    • pp.103-110
    • /
    • 1992
  • This study is aimed to investigate the effect of various thermomechanical treatments($T_6$, $T_8$ and ITMT) on the microstructure and mechanical properties of an Al-Cu-Li-Ag-Mg-Zr alloy (Weldalite 049) which has been known to strong natural aging response, good weldablity and high strength in $T_6$ sand $T_8$ temper. This experiment was performed by means of differential scaning calorimetry, tensile test, optical and transmission electron microscopy. The tensile strength in the peak aged condition shows 620, 650 MPa in $T_6$ and $T_8$(40% cold work), respectively. Also, The tensile strength is increased with cold working in $T_8$ but decreased at 60% cold working. However, the tensile strength of the intermediate thermomechanical treated speciman(ITMT) is lower than that of $T_6$ temper about 20% but the elongation is higher than two times. It might be predicted that the ITMT is effective processing to improve the toughness of this alloy. In $T_6$, $T_8$ and ITMT, the major strengthening phase is $T_1(Al_2CuLi)$ phases. and the fine $T_1$ phase which are homogeneously precipited in matrix was observed much more in $T_8$ than $T_6$ and ITMT.

  • PDF

러시아산 가문비와 낙엽송, 그리고 미얀마산 대나무로 제조한 열기계펄프 특성 연구 (Characteristics of Thermomechanical Pulps Made of Russian Spruce and Larix, and Myanmar Bamboo)

  • 이지영;김철환;남혜경;박형훈;권솔;박동훈
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권1호
    • /
    • pp.135-146
    • /
    • 2016
  • 국내에서는 열기계펄프 생산을 국내산 소나무(Pinus densiflora)만을 사용하고 있다. 가격적 측면에서 장점이 있지만 지속적인 수급이나 피치와 같은 문제점이 내재되어 있기 때문에 주원료를 대체할 수 있는 방안이 강구되어야 한다. 열기계펄프의 원료로서 국내산 소나무를 대체할 수 있는 수종으로 러시아산 가문비(Picea jezoensis), 러시아산 낙엽송(Larix leptolepis), 그리고 미얀마산 대나무(Phyllostachys bambusoides)를 선정하여 열기계펄프 특성을 분석하였다. 이들 원료들은 동일한 조건 하에서 열기계펄프로 제조되었다. 러시아산 낙엽송과 미얀마산 대나무는 펄프화 공정에 부정적인 영향을 미칠 수 있는 추출물 함량이 과량 검출되었다. 러시아산 가문비는 다른 수종들과는 달리 shive와 피치의 함량이 가장 적게 정량되었고, 리파이닝 에너지도 국내산 소나무에 수준으로 매우 적게 소모되었다. 열기계펄프의 백색도면에서는 가문비가 가장 높은 백색도를 나타내어 표백 약품의 절감에 기여할 수 있을 것으로 기대되었다. 결론적으로 러시아산 가문비가 공정 에너지 절감과 펄프 품질 향상 측면에서 국내산 소나무를 대체할 수 있는 가장 우수한 수종인 것으로 나타났다.

가공 열처리에 따른 Ti-10Ta-10Nb합금의 미세조직 및 기계적 특성 변화 (Effects of Thermomechanical Processing on Changes of Microstructure and Mechanical Properties in Ti-10Ta-10Nb Alloy)

  • 이도재;황주영;이경구;윤계림;전충극
    • 열처리공학회지
    • /
    • 제18권2호
    • /
    • pp.91-98
    • /
    • 2005
  • Both commercially pure titanium and Ti-6Al-4V alloy have been widely used as biomaterials because of their excellent biocompatibility, corrosion resistance and mechanical properties. However, in recent years, vanadium has been found to cause cytotoxic effects and adverse tissue reactions, while aluminium has been associated with potential neurological disorders. A newly designed ${\alpha}+{\beta}$ type Ti alloy, Ti-10Ta-10Nb alloy showed superior properties to CP Ti and Ti-6Al-4V alloy in the point of biomaterial, and elucidated the future uses as a biomaterial. Microstructural changes of Ti-10Ta-10Nb alloy after hot-rolling, warm-rolling, solution and aging treatment were investigated. According to TEM results, the microstructures after solution treatment were composed of mostly ${\alpha}$ phase with a trace of ${\beta}$ phase due to adding ${\beta}$-phase stabilizer tantalum and niobium. The microstructures after warm-rolling is coarse and elongated ${\alpha}$ phase and hot rolling resulted in very fine ${\alpha}$ widmanst$\ddot{a}$tten. The highest value of hardness was obtained by aging treatment at $400^{\circ}C$ for 20hr in which microstructure consisted of very fine ${\alpha}$ phase in ${\beta}$ matrix.