• Title/Summary/Keyword: thermomagnetic curve

Search Result 4, Processing Time 0.016 seconds

Study of Hopkinson Effect in the HDDR-treated Nd-Fe-B-type Material

  • Kwon, H.W.;Shon, S.W.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.397-406
    • /
    • 2000
  • Hopkinson effect in the HDDR-treated Nd$\sub$15/Fe$\sub$77/B$\sub$8/ alloy was examined in detail by means of a thermomagnetic analysis with low magnetic field (600 Oe). The emergence and magnitude of maximum in magnetisation in the thermomagnetic curve due to the Hopkinson effect was correlated to the grain structure and coercivity of the HDDR-treated material. the HDDR-treated materials showed clear Hopkinson effect (maximum in magnetisation just below the Curie temperature of the Nd$\sub$2/Fe$\sub$14/B phase) on heating in the thermomagnetic curve. Magnitude of the magnetisation rise due to the Hopkinson effect became smaller as the recombination time increased. The magnetisation recovery at room temperature on cooling from above the Curie temperature became smaller as the recombination time increased. The HDDR-treated materials with shorter recombination time, finer grain size and higher coercivity showed larger magnetisation maximum due to Hopkinson effect in the thermomagnetic curve.

  • PDF

Microstructure and Magnetic Properties of Au-doped Finemet-type Alloy

  • Le, Anh-Tuan;Kim, Chong-Oh;Ha Nguyen Duy;Chau Nguyen;Tho Nguyen Duc;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.36-42
    • /
    • 2006
  • In this report, we demonstrate a comprehensive analysis of the effects of Au addition on the microstructure and magnetic properties of $Fe_{73.5}Si_{13.5}B_{9}Nb_{3}Au_1$ Finemet-type alloy. It was found that the as-quenched alloys were the amorphous state and turned into nanocrystalline state under heat treatments. The DSC analysis indicates that the sharply exothermal peak corresponding to the crystallization of the $\alpha-Fe(Si)$ was observed at $547-579^{\circ}C$ depending on the heating rates, which is little higher than that of original Finemet (542-$570{^{\circ}C}$, respectively). Besides, the thermomagnetic result confirmed that the full substitution of Cu by Au with the single phase structure in the M(T) curve along cooling cycle. Ultrasoft magnetic properties of the nanocrystallized samples were significantly enhanced by the proper annealing such as the increase of permeability and the decrease of the coercivity. The optimum annealing condition was found at the annealing temperature of $540^{\circ}C$ and the increase of the annealing time up to 90 min.

Study of the Hopkinson Effect in the HDDR-treated Nd-Fe-B-type Material

  • Kwon, H.W;Shon, S.W
    • Journal of Magnetics
    • /
    • v.6 no.2
    • /
    • pp.61-65
    • /
    • 2001
  • The Hopkinson effect in the HDDR-treated $Nd_{15}Fe_{77}B_8$ allay was examined in detail by means of a thermo-magnetic analysis with low magnetic field (600 Oe). The emergence and magnitude of maximum in magnetisation in the thermomagnetic curve due to the Hopkinson effect was correlated with the grain structure and coercivity of the HDDR-treated material. The HDDR-treated materials showed a clear Hopkinson effect (maximum in magnetisation just below the Curie temperature of the $Nd_2Fe_{14}B\;$ phase) on heating. The magnitude of the magnetisation rise due to the Hopkinson effect became smaller as the recombination time increased. The magnetisation recovery at room temperature on cooling from above the Curie temperature became smaller as the recombination time increased. The HDDR-treated materials with shorter recombination time, finer grain size and higher coercivity showed larger magnetisation maximum due to the Hopkinson effect in the thermo-magnetic curve.

  • PDF

A Note on Magnetic Properties of Volcanic Rocks Collected from King George Island, Antarctic Peninsula

  • Funaki, Minoru;Ogishima, Tomoko
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.313-318
    • /
    • 2002
  • The basic magnetic properties are reported for Eocene andesite and granitic andesite collected from the King Sejong Station and Marsh Runway at King George Island, South Shetland Islands Antarctic Peninsula. Samples A (andesite), B (granitic andesite) and D (granitic andesite) carry stable component of natural remanent magnetization (NRM), but sample C (andesite) unstable URM. These NRM stabilities are consistent with the domain structures estimated by the ratios of $J_R/J_s\;and\;H_{RC}/H_C$ values. On the basis of their Curie temperature, we infer magnetite as the main magnetic carrier for samples A B and C and titanomagnetite for sample D. Our study reveals that samples A and B are suitable for paleomagnetic investigations, whereas sample D is not.