• Title/Summary/Keyword: thermoelectronics

Search Result 1, Processing Time 0.013 seconds

Thermoelectric Power Generation Characteristics of the (Pb,Sn)Te/(Bi,Sb)2Te3Functional Gradient Materials with Various Segment Ratios (분할접합비에 따른 (Pb,Sn)Te/(Bi,Sb)2Te3 경사기능소자의 열전발전특성)

  • Lee, Kwang-Yong;Hyun, Dow-Bin;Oh, Tae-Sung
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.911-917
    • /
    • 2002
  • 0.5 at% $Na_2$Te-doped ($Pb_{0.7}Sn_{0.3}$)Te and ($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ powders were fabricated by mechanical alloying process. 0.5 at% Na$_2$Te-doped ($Pb_{0.7}Sn_{0.3}$)Te powders were charged at one end of mold and ($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ powders were charged at the other end of a mold. Then these powders were hot-pressed to form p-type ($Pb_{0.7}Sn_{0.3}$)Te/($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ functional gradient materials with the segment ratios (the ratio of ($Pb_{0.7}Sn_{0.3}$)Te to ($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ ) of 1:2, 1:1, and 2:1. Power generation characteristics of the ($Pb_{0.7}Sn_{0.3}$)Te/($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ were measured. When the temperature difference ΔT at both ends of the specimen was larger than $300^{\circ}C$, the ($Pb_{0.7}Sn_{0.3}$)Te/($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ with the segment ratios of 1:2 and 1:1 exhibited larger output power than those of the ($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ and 0.5 at% $Na_2$ Te-doped ($Pb_{0.7}Sn_{0.3}$)Te alloys. The maximum output power of the ($Pb_{0.7}Sn_{0.3}$)Te/($Bi_{0.2}Sb_{0.8}$)$_2$$Te_3$ predicted with the measured Seebeck coefficient and the estimated electrical resistivity was in good agreement with the measured maximum output power.