• Title/Summary/Keyword: thermodynamic equations

Search Result 154, Processing Time 0.02 seconds

Linear Relationships between Thermodynamic Parameters (Part II) Applicabiliy of New Equations (熱力學函數間의 直線關係 (第2報) 適用性의 檢討)

  • Ikchoon Lee;Yong Ja Park
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.238-244
    • /
    • 1963
  • Linear relationships between thermodynamic parameters, ,${\Delta}{\Delta}H^{\neq}=a{\sigma}+b{\Delta}{\Delta}S^{\neq}$, and $\Delta{\Delta}F^\neq=a\sigma+(b-T)\Delta{\Delta}S^\neq$, which were derived in the previous report have been tested with 57 reactions from literature. Linearities of plots $\Delta{\Delta}H^\neq-a\sigma$ vs. $\Delta{\Delta}S^\neq$ were generally good and the average correlation coefficient was 0.983 and the average of standard deviations from regression lines was 0.11. For 15 out of 57 reactions, Hammett plots were unsatisfactory and most of the reaction did not satisfy the Leffler equation. The general applicability of the new equations has been confirmed by the analysis of each reaction for which existing equations failed to correlate.

  • PDF

Development of a three dimensional circulation model based on fractional step method

  • Abualtayef, Mazen;Kuroiwa, Masamitsu;Sief, Ahmed Khaled;Matsubara, Yuhei;Aly, Ahmed M.;Sayed, Ahmed A.;Sambe, Alioune Nar
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.14-23
    • /
    • 2010
  • A numerical model was developed for simulating a three-dimensional multilayer hydrodynamic and thermodynamic model in domains with irregular bottom topography. The model was designed for examining the interactions between flow and topography. The model was based on the three-dimensional Navier-Stokes equations and was solved using the fractional step method, which combines the finite difference method in the horizontal plane and the finite element method in the vertical plane. The numerical techniques were described and the model test and application were presented. For the model application to the northern part of Ariake Sea, the hydrodynamic and thermodynamic results were predicted. The numerically predicted amplitudes and phase angles were well consistent with the field observations.

Estimation of Hydrogen Filling Time Using a Dynamic Modeling (동적 모델링에 의한 수소 충전 시에 걸리는 시간의 산출)

  • NOH, SANGGYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.189-195
    • /
    • 2021
  • A compressed hydrogen tank is to be repressurized to 40 bar by being connected to a high-pressure line containing hydrogen at 50 bar and 25℃. Hydrogen filling time and the corresponding hydrogen temperature has been estimated when the filling process stopped according to several thermodynamic models. During the process of cooling the hydrogen tank, hydrogen temperature and pressure vs. time estimation was performed using Aspen Dynamics. Filling time, hydrogen temperature after filling hydrogen gas, cooling time and the final tank pressure after tank filling process have been completed according to the thermodynamic models are almost same.

Experimental Study and Correlation of the Solid-liquid Equilibrium of Some Amino Acids in Binary Organic Solvents

  • Mustafa Jaipallah Abualreish;Adel Noubigh
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.173-180
    • /
    • 2024
  • Under ordinary atmospheric circumstances, the gravimetric technique was used to measure the solubility of L-cysteine (L-Cys) and L-alanine (L-Ala) in various solvents, including methyl alcohol, ethyl acetate, and mixtures of the two, in the range o 283.15 K to 323.15 K. Both individual solvents and their combinations showed a rise in the solubility of L-Cys and L-Ala with increasing temperature, according to the analyzed data but when analyzed at a constant temperature in the selected mixed solvents, the solubility declined with decreasing of initial mole fractions of methyl alcohol. To further assess, the relative utility of the four solubility models, we fitted the solubility data using the Jouyban-Acree (J-A), van't Hoff-Jouyban-Acree (V-J-A), Apelblat-Jouyban-Acree (A-J-A), and Ma models followed by evaluation of the values of the RAD information criteria and the RMSD were. The dissolution was also found to be an entropy-driven spontaneous mixing process in the solvents since the thermodynamic parameters of the solvents were determined using the van't Hoff model. In order to support the industrial crystallization of L-cysteine and L-alanine and contribute to future theoretical research, we have determined the experimental solubility, correlation equations, and thermodynamic parameters of the selected amino acids during the dissolution process.

Dynamic Analysis of Free-Piston Stirling Engine Using Ideal Adiabatic Model (이상단열 모델에 의한 자유피스톤 스털링엔진의 동적거동 해석)

  • 변형현;최헌오;신재균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1751-1758
    • /
    • 1994
  • A new set of governing equations is derived for the dynamic analysis of the Free-Piston Stirling Engines(EPSE). Equations from the ideal adiabatic model for the thermodynamic analysis of the working fluid are incoporated with the equations of motion for the moving masses of the system, resulting in a set of nonlinear differential equations. The coupled set of equations are numerically integrated with proper intial conditions to obtain a steady state response of the engine. The proposed method is compared with the conventional method of analyzing EPSE based mainly on the ideal isothermal model. The results clearly shows the limitationsl of the conventional methods and the relative advantages of the method proposed in the present study.

Thermodynamic Analysis on the Feasibility of Turbo Expander Power Generation Using Natural Gas Waste Pressure (천연가스 폐압발전 활성화의 당위성에 대한 열역학적 분석)

  • Ha, Jong Man;Hong, Seongho;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.136-142
    • /
    • 2012
  • Thermodynamic equations for the electric power and temperature in a turbo expander generator (TEG) using pressure energy in a natural gas line are derived. From the equations, it was shown that dominant factor is not the pressure difference but the pressure ratio. The high energy level in the inlet of TEG can be made from nearly no expense of electric energy input, which means TEG can be treated as one of newly available clean energy source. If a post heating method is chosen to heat up expanded natural gas, the usage of cold energy is possible without a refrigeration cycle. The combined TEG and refrigeration system enhances economic benefit much more.

Calculation and Comparison of Thermodynamic Properties of Hydrogen Using Equations of State for Compressed Hydrogen Storage (상태방정식을 이용한 고압수소 저장을 위한 수소 열역학 물성 계산 및 비교)

  • PARK, BYUNG HEUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.184-193
    • /
    • 2020
  • One of the technical methods to increase the volumetric energy density of hydrogen is to pressurize the gaseous hydrogen and then contain it in a rigid vessel. Especially for automotive systems, the compressed hydrogen storage can be found in cars as well as at refueling stations. During the charging the pressurized hydrogen into a vessel, the temperature increases with the amount of stored hydrogen in the vessel. The temperature of the vessel should be controlled to be less than a limitation for ensure stability of material. Therefore, the accurate estimation of temperature is of significance for safely storing the hydrogen. In this work, three well-known cubic equations of state (EOSs) were adopted to examine the accuracy in regenerating thermodynamic properties of hydrogen within the temperature and pressure ranges for the compressed hydrogen storage. The formulations representing molar volume, internal energy, enthalpy, and entropy were derived for Redlich-Kwong (RK), Soave-Redlioch-Kwong (SRK), and Peng-Robinson (PR) EOSs. The calculated results using the EOSs were compared with literature data given by NIST. It was revealed that the accuracies of RK and SRK EOSs were satisfactorily compatible and better than the results by PR EOS.

Modeling of Thermodynamic Properties of Saturated state Hydrogen using Equation of State (상태방정식을 이용한 포화상태 수소의 열역학적 물성 모델링)

  • Bong-Seop Lee;Hun Yong Shin;Choong Hee Joe
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.550-554
    • /
    • 2023
  • Fossil energy sources are limited in their sustainable use and expansion due to global warming caused by carbon dioxide emissions. Hydrogen is considered as a promising alternative to traditional fossil fuels. To ensure the stable long-term storage, it is necessary to accurately predict its thermodynamic properties at cryogenic temperatures. Therefore, this study aimed to investigate thermodynamic properties, such as saturated vapor pressure and density, enthalpy, and entropy of liquid and gas, using cubic equations of state that demonstrate relatively simple relationships. Among the three types of equations of state (Redlich-Kwong (RK), Soave-Redlich-Kwong (SRK), and Peng-Robinson (PR)), the SRK model exhibited relatively accurate prediction results for various physical properties.

Studies on the Adsarption Characteristics of Fluoride Ion-Containing Wastewater by Employing Waste Oyster Shell as an Adsorbent (폐굴껍질을 흡착제로 한 불소폐수 처리특성에 관한 연구)

  • Lee, Jin-Suk;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.222-227
    • /
    • 2007
  • The adsorption features of fluoride ion on the oyster shell have been investigated for the purpose of the employment of waste oyster shell as an adsorbent for the treatment of fluoride ion-containing wastewater. The major component of oyster shell was examined to be Ca with minor components of Na, Si, Mg, Al, and Fe. As the initial concentration of fluoride ion was raised, its absorbed amount was enhanced at equilibrium, however, the adsorption ratio of fluoride ion compared with its initial concentration was shown to be decreased. Also, adsorption of fluoride ion onto the oyster shell resulted in the formation of $CaF_2$ in the morphological structure of adsorbent. Kinetic analysis showed that the adsorption reaction of fluoride ion generally followed a second order reaction with decreasing rate constant with the initial concentration of adsorbate. Freundlich model agreed well with the adsorption behavior of fluoride ion at equilibrium and the adsorption reaction of fluoride ion was examined to be endothermic. Several thermodynamic parameters for the adsorption reaction were calculated based on thermodynamic equations and the activation energy for the adsorption of fluoride ion onto oyster shell was estimated to be ca. 13.589 kJ/mole.